hcp-Mg 입자분산형 Mg-Zn-Ce계 비정질합금의 제조와 기계적 성질

Production and Mechanical Properties of Mg-Zn-Ce Amorphous Alloys by Dispersion of Ultrafine hcp-Mg Paticles

  • 김성규 (부산공업대학교 생산가공공학과) ;
  • 박흥일 (부산공업대학교 생산가공공학과) ;
  • 김우열 (부산공업대학교 생산가공공학과) ;
  • 조성명 (부산공업대학교 생산가공공학과) ;
  • 김영환 (부산공업대학교 금속공학과) ;
  • ;
  • Kim, Seong-Gyu (Dept. of Production & Weldding Eng., Pusan National Unv. of Technology) ;
  • Park, Heung-Il (Dept. of Production & Weldding Eng., Pusan National Unv. of Technology) ;
  • Kim, U-Yeol (Dept. of Production & Weldding Eng., Pusan National Unv. of Technology) ;
  • Jo, Seong-Myeong (Dept. of Production & Weldding Eng., Pusan National Unv. of Technology) ;
  • Kim, Yeong-Hwan (Dept. of Metallurgical Eng., Pusan National Univ. of Technology) ;
  • Inoue, A. (Institute of Materials Research, Tohoku University) ;
  • Masumoto, T. (Institute of Materials Research, Tohoku University)
  • 발행 : 1994.12.01

초록

Mg-Zn-Ce계 합금에서 비정질 단상 및 hcp-Mg입자분산형 비정질합금이 20-40%, Zn, 0-10%Ce과 5-20%Zn, 0-5%Ce 의 조성범위에서 각각 생성되었다. 초미세 hcp-Mg입자분산형 $Mg_{85}Zn_{12}Ce_{3}$비정질합금은 급속응고 또는 급속응고리본의 열처리에 의해 Mg입자의 입경을 4-20nm의 범위로 조절할 수 있었으며, 이 범위에서는 밀착굽힘이 가능할 만큼 충분한 인성을 가지고 있었다. 이 합금의 최대인장강도($\sigma_{B}$)와 파단 연신율($\varepsilon_{f}$)은 hcp-Mg입자의 체적분율에 따라서 670-930MPa, 5.2-2.0%의 범위였으며, 최대 비강도($\sigma_{B}$밀도 =$\sigma_{s}$)는 $3.6 \times 10^5N \cdot m/kg$에 달하였다. 이와 같이 Mg입자분산형 비정질 합금의($\sigma_{B}$), ($\sigma_{s}$)그리고 $\varepsilon_{f}$의 최대치가 Mg-Zn-Ce계 비정질합금(690MPa, $2.5 \times 10^5N \cdot m/kg$, 2.5%)보다 월등하게 높다는 것은 주목할 만 하다. 복합상 조직이 형성됨으로서 기계적 강도가 증가하는 것은 동일 조성의 비정질상보다 강한 hcp과포화 고용체의 분산강화에 기인하는 것이라고 고찰되었다.

An amorphous single phase and coexistent amorphous and hcp-Mg phases in Mg-Zn-Ce system were found to form in the composition ranges of 20 to 40% Zn, 0 to 10% Ce and 5 to 20% Zn, 0 to 5% Ce, respectively. A $Mg_{85}Zn_{12}Ce_{3}$ amorphous alloy containing nanoscale hcp-Mg particles was found to form either by melt spinning or by heat treatment of melt -spun ribbon. The particle size of the hcp-Mg phase can be controlled in the range of 4 to 20 nm. The mixed phase alloy prepared thus has a good bending ductility and exhibits high ultimate tensile strength($\sigma_{B}$) ranging from 670 to 930 MPa and fracture elongation($\varepsilon_{f}$) of 5.2 to 2.0%. The highest specific strength($\sigma_{B}$/density =$\sigma_{s}$)$3.6 \times 10^5N \cdot m/kg$. It should be noted that the highest values of flB, US and ?1 are considerably higher than those (690MPa,$2.5 \times 10^5N \cdot m/kg$and 2.5%) for amorphous Mg-Zn-Ce alloys. The increase of the mechanical strengths by the formation of the mixed phase structure is presumably due to a dispersion hardening of the hcp supersaturated solution which has the hardness higher than that of the amorphous phase with the same composition.

키워드

참고문헌

  1. J. Appl. Phys. v.31 no.36 P. Duwez;R.H. Willens; W.Klement
  2. Acta Met. v.19 no.725 T. Masumoto;R. Maddin
  3. Rev. Sci. Instr. v.41 no.1237 H.S. Chen;C.E. Miller
  4. Met. Trans. v.3 no.699 H.J. Leamy;H.S. Chen;T.T. Wang
  5. 日本金屬學會誌 v.38 no.835 奈賀;橋本;增本
  6. Jpn. J. Appl. Phys. v.13 no.1889 H. Hujimori;T. Masumoto;Y. Obi;M. Kikuchi
  7. Appl. Phys. Lett. v.26 no.128 T. Egami;P.J. Flanders;C.D. Graham, Jr.
  8. J. Non-Crystal line Solids v.15 no.174 H.S. Chen;D.E. Polk
  9. Jpn. J. Appl. Phys. v.27 no.L479 A. Inoue;H. Tomioka;T. Masumoto
  10. Proc. 1st Japan, Intern. SAMPE. Symposium v.28 no.7 A. Inoue;T. Masumoto;K. Ohtera;K. Kita
  11. Jpn. J. Appl. Phys. v.27 no.L2248 A. Inoue;K. Ohtera;K. Kita;T. Masumoto
  12. Mater. Trans. JIM v.32 no.331 Y.H. Kim;A. Inoue;T. Masumoto
  13. Mater. Trans. JIM v.31 no.747 Y.H. Kim;A. Inoue;T. Masumoto
  14. Mater. Trans. JIM v.32 no.599 Y.H. Kim;A. Inoue;T. Masumoto
  15. J. Non-Crystalline Solids v.5 no.444 H.S. Chen;H.J. Leamy;M. Barmatz
  16. Acta Met. v.19 no.779 D. Weaire;M. Ashby;J. Logan;M.J. Weins