플라즈마 화학증법에 의해 형성된 Diamondlike Carbon 박막의 광학적 특성에 미치는 수소가스의 영향

Effects of Hydrogen Gas on the Optical Properties of Diamondlike Carbon Thin Films Prepared by Plasma Enhanced Chemical Vapor Deposition

  • Kim, Han-Do (Dept.of Materials Science Engineering, Seoul National University) ;
  • Ju, Seung-Gi (Dept.of Materials Science Engineering, Seoul National University)
  • 발행 : 1994.04.01

초록

메탄가스를 반응가스로 하여 플라즈마 화학증착법으로 Diamondlike Carbon(DLC)박막 제작시 박막의 광학적 특성에 미치는 수소가스의 영향을 조사하였다. 수소가스를 보조가스로 사용하는 경우는 불활성가스인 아르곤이나 헬륭의 경우와는 달리 인가전력의 변화에 따라 수소가스의 역할이 다르게 나타났다. Optical band gap의 변화와 FT-IR 분석결과로부터 수소가스에 의한 C-H 결합의 화학적인 에칭과 스퍼터링 및 수소의 박막 내로의 주입 가능성을 예측하고 이를 아르곤과 헬륨을 보조가스로 사용한 경우와 비교하여 그 타당성을 확인하였다.

Diamondlike carbon thin film have been fabricated using methane as a reactive gas by plasma enhanced chemical vapor deposition. Effects of hydrogen gas on the optical properties of the thin film has been investigated. When the hydrogen was used as a secondary gas, the role of hydrogen changed with deposition power unlike inert gases such as Ar and He. From the changes of optical band gap and FT-IR analysis, it was predicted that the chemical etching, sputtering of C-H bond by hydrogen and the implantation of hydrogen into the thin film could occur. The validity of the possibilities was confirmed by examining the effect of secondary gases such as Ar and He.

키워드

참고문헌

  1. J. Appl. Phys. v.59 J.Wagner;P.Lautenschlager
  2. J. Vac. Sci. Technol. v.A4 no.3 V.J.Kapoor;M.J.Mirtich;B.A.Banks
  3. J. Appl. Phys. v.61 no.9 S.Poawer;R.Kalish;M.Adel;V.Richter
  4. J. Vac. Sci. Technol. v.A no.1 T.Mori;Y.Namba
  5. Appl. Opt. v.21 D.R.Mckenzie;R.C.Mcphedram;L.C.Botten;N.Savvides;R.P.Netterfield
  6. IEEE Transactions on Magnetics v.Mag23 H.Kurokawa;T.Mitani;T.Yonezawa
  7. J. Vac. Sci. Technol. v.A no.3 P.V.Koeppe;V.J.Kopoor;M.J.Mirtich;B.A.Banks;D.A.Gulino
  8. Thin Solid Films v.131 M.J.Mirtich;D.M.Swec;J.C.Angus
  9. J. Vac. Sci. Technol. v.A no.3 F.Jansen;M.Machonkin;S.Kaplan;S.Hark
  10. IBM J. RES. DEVELOP. v.34 no.6 A.Grill;B.S.Meyerson;V.V.Patel
  11. Plasma Deposited Thin Films J.C.Angus;P.Koidle;S.Domitz;J.Mort;F.Jansen
  12. J. Phys. v.D no.17 K.Tachibana;M.Nishida;H.Harima;Y.Urano
  13. Int. J. Mass Spectr. Ion Phys. v.16 G.Smolinsky;M.J.Vasile
  14. Phys. Rev. v.B no.41 G.L.Vandentop;M.Kawasaki;R.M.Nix;I.G.Brown;M.Salmeron;G.A.Somorjai
  15. Phys. Status Solidi. v.15 J.Tauc;R.Grigorovici;A.Vancu
  16. J. Phys. D. v.23 A.Tabata;S.Fujii;Y.Suzuoki;T.Mizutani;M.Ieda
  17. Thin Solid Films v.143 R.Memming
  18. Thin Solid Films v.146 P.Couderc;Y.Catherine
  19. J. Vac. Sci. Technol. v.A no.7 J. Gonzalez-Hernandez;B.S.Chao;D.A.Pawlik
  20. J. Korean Ins. Met. & Mater. v.31 no.1 H.Kim;I.O.Hwang;S.K.Joo
  21. J. Vac. Sci. Technol. v.A no.5 H.C.Tsai;D.B.Bogy
  22. Appl. Phys. Lett. v.29 E.G.Spencer;P.H.Schmidt;D.C.Joy;F.J.Samsalone
  23. CRC Handbook of Chemical and Physics (J2nd ed.) R.C.Weast
  24. J. Appl. Phys. v.60 A.Matsuda
  25. J. Non Cryst. Solids v.97&98 A.Matsuda;K.Tanaka
  26. J. Nucl. Mater. v.145 no.147 E.Vietzke;K.Flaskamp;V.Philipps;G.Esser;P.Wienhold;J.Winter