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Abstract— Deformation of materials in the duct flow depends on the initial position and the orientation of the
material element. To understand the details of the deformation process, one has to evaluate the deformation
gradient tensor as a function of time and the initial position over the entire cross section in the three-dimensional
duct flow. Therefore, the present paper proposes a simple method to effectively calculate the deformation gradient
tensor over the entire section in the three-dimensional duct flow in a cartesian coordinate system aligned with
the particle trajectory orbit. Components of the deformation gradient tensor in such a special coordinate systera

are found to play an important role in understanding a deformation measure in duct flows.
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1. Introduction

It is of great interest to enhance our unders-
tanding of the kinematics of deformation in the
three-dimensional duct flow, which are steady and
incompressible velocity fields composed of a re-
circulating two-dimensional cross-sectional flow
and a unidirectional axial flow, both flows remai-
ning unchanged along the axial direction [1].

One of typical industrial examples of duct flows
[1] is the pressure and drag driven flow in a
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channel formed by a barrel and a screw in a
single-screw extruder. Recently, we have studied
the extrusion process in terms of the flow cha-
racterisitcs [2], the residence time distribution
[3] and deformation characteristics [4, 5] inclu-
ding the effect of 3-D circulatory flow in a
single-screw extruder. It may be noted that the
stretching or deformation of materials in the duct
flow depends on the initial position and the orie-
ntation of the material element. To understand
the details of the deformation process, one has
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to evaluate the deformation. gradient tensor as a
function of time and the initial position over the
entire cross section, which requires a tremendous
computational time.

With this in mind, the present paper proposes
a simple and convenient method to calculate the
deformation gradient tensor over the entire cross
section in the three-dimensional duct flow and
finally discusses a representative deformation
measure based on components of the deformation
gradient tensor in a cartesian coordinate system
along the particle trajectory.

2. Kinematic Considerations

Fig. 1 schematically represents a particle mo-
tion in a duct flow with a coordinate system de-
fined, x; and x. coordinates lying in the cross-
sectioned plane of the duct with x; coordiate
chosen in the axial direction. Since the velocity
field does not vary with the axial direction, a
trajectory of a fluid particle, after one full circu-
lation in the x,-x, plane, will form a closed orbit
which is actually the constant line of the stream
function in the x;-x, plane as shown in Fig 1,
where T, the period of circulation, denotes the
time it takes a fluid particle to circulate once the
trajectory contour in the x;-x, plane.

The motion of a fluid particle might be repre-
sented as the following autonomous continuous-
time dynamical system:

X 0 with xO)=X Q)
g Y with x(0)=

X.‘

t=0 t=Tci

r

Fig. 1. Particle trajectory during one circulation in a
duct flow with coordinate systems.
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where x denotes a position vector in space oc
cupied at time t by a particle which occupies X

at time t=0. Then, the solution of this system can
be represented as:

x(H)=o(X, t), with X=¢(X, 0) (2)

The deformation gradient tensor, F(X, t), can
represent the deformation of a material initially
located at X by relating the initial material vector,
38X, with the deformed material vector, dx(t), after
time t as follows [6-8].

dx(t)=F(X, t)-8X (€))

The deformation gradient tensor is governed by
the following evolution equation:

dF(X, t)

m =L(¢, 0))-FX, t) with FX, 0)=1 (4

where L is the velocity gradient tensor [4, 6]. By
differentiating Eq. (3) with respect to time and
applying Egs. (3) and (4) into this result, the rate
of change of dx can be obtained as follows:

d(6x)
dt

=L(o(X, t))-dx )

To analyze the deformation process in duct
flows, one has to first obtain the velocity field,
which could be determined numerically, for ins-
tance via a finite element method [3]. Once the
velocity field is known in duct flows, the particle
trajectory, i.e. x(t), can be determined by nume-
rically integrating Eq. (1) by means of the fou-
rth-order Runge-Kutta method in general. During
the Runge-Kutta integration of Eq. (1), one can
also determine the period of circulation, T., [3].
Similarly, one may also integrate Eq. (4) to obtain
the history of deformation gradient tensor by the
Runge-Kutta method [4, 9].

Unfortunately, however, making use of Eq. (4)
requires a numerical evaluation of the velocity
gradient tensor from the velocity field. Thus nu-
merically obtained velocity gradient field is worse
in accuracy than the velocity field, especially when
singular corners exist, for instance, in the ext-
ruder channel. Therefore, a numerical integration
of Eq. (4) may lead to an inaccurate deformation
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gradient tensor.

In this regard, we derived new formulae to
determine the deformation gradient tensor wi-
thout having to numerically evaluate the velocity
gradient so that the difficulty encountering in
making use of Eq. (4) is eliminated. The deriva-
tion of the new formulae is described below.

3. Simple Method for Determining a
Deformation Measure

We will adopt the following notations. In a
cartesian coordinate system depicted in Fig. 1, the
spatial velocity field is denoted by v(x)=(v,, v,
vs). A particle initially located at X=(X;, X,, Xy)
has a velocity denoted by v(X)=(V,, V,, V3) at the
initial position at time t equal to zero and after
one circulation time T (X).

An integration of Eq. (4), following a fluid pa-
rticle X, from t=0 to a certain time t results in
the following equation:

Vi, axk ov;
[} a aX f 0 S dt
6)

Fi(X, D-F(X, 0= 2

where the integrand should be evaluated follo-
wing the particle. In particular, after one circu-
lation, the above equation can be rewritten as:
eirX) av’
FX, T)=FiX, 0= [ -t @
oX;
Noting that T, is a function of the intial position,
X, one can have the following equation from Lei-
bnitz’s rule:

I3} T,% OV 0T

e e ($vat)=]; ox VR @®
where ¢ -+ dt denotes the integral over the clos-
ed trajectory orbit in the x;-x, plane. Applying the
above equation to Eq. (7) results in the following
interesting formula for the deformation gradient
tensor:

9 (§ vt)— v, 2L )

FiX, Ta)—
( ) 0X; 0X;

The above equation can be expressed explicitly
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for i=1, 2, 3, as follows:

Flj(X; Tcir) - Flj(x 0) =

Ty 3T,
X (ﬁ vidt) -V, X Vox
(10

sz(X, T.)—F zj(X, 0=
2 ) v, L

aX; an aX;'
(an
a 6Tm
FuX, )= Fo(X, 0)=7-( vt~ Vi x 1

where ¢ vidt=¢v,dt=0 are utilized. Since ¢ vydt
and T. are independent of xs, the final matrix
form for the deformation gradient tensor after one
circulation can be expressed as:

F(Xr T[ir):
- 1-v, o _y, 9T 0
oX, 0X,
vy, e 1-v, L= 0
oX, oXe
P T, o oT.,
f) vadt)— Vs —(pwdt) v 1

). X, 0%, 0X, -

(13)

One may introduce a deformation tensor, M,
defined by F(X, T.,)=(I—M) [1]. Then, the te-
nsor M can be expressed as:

- M= .
Tﬂ'y Tczr
V, A Vi CAY. 0
X, X,
Tar dir
Vz a—“ Vz ﬂ 0
X, 0X,
) oT.; d oT.
L - axl (§ V3dt> + V3 aXl - a—)(z <§ V3dt> + V3 aXZ OJ
(14)

After k-times the period of recirculation, # being
any integer, the deformed material vector §x can

be expressed with the help of Eq. (3) as:
Sx(kT.)=(I—M):-8X (15)

It might be mentioned that Franjione and Ottino
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[1], following a different argument from the pre-
sent one, derived an equation similar to Eq. (14)
but with some mistakes yielding a wrong expre-
ssion for M (see Appendix A). Even with such
mistakes, their conclusion that M is nilpotent
order 2 remains unchanged; in other words, M"
=0 for n=2 [1]. M*=0 can be easily shown be
cause v(X):VxT.,=0 and V(X)-Vx(gﬁ vsdt)=0 (see
[1] for the proof), Vx denoting gradients with
respect to the initial position X.

Therefore, Eq. (15) reduces to:

Ox(kT:)=I—kEM) 08X (16)

which explains that the lineal stretch in duct flows
increases linearly with time, or number of reci-
rculations [1].

As far as the deformation measure over the
entire cross-section of the duct is concerned, Eq.
(13) can be utilized to determine components of
the deformation gradient tensor in the global ca-
rtesian coordinate system (X, X», X;) for a material
initially located at X after one circulation in the
X;-X, plane. In using Eq. (13), one has to evaluate
T, and gﬁv3dt as a function of X, and X.. Those
deformation gradient tensor components thus
obtained are not in a convenient form to represent
the deformation measure. In this regard, we want
to introduce a special cartesian coordiante system
in which physically more meaningful components
of the deformation gradient tensor can be defined,
as explained below.

In order to consider the deformation gradient
tensor for a material initially located at X after
one period of recirculation, let us introduce a
cartesian coordiate system, (x, X, Xs) such that
x, and X, are tangential and normal to the closed
orbit at X, respectively, and x; is along the axial
direction, as depiced in Fig. 1. From now on, the
bar system represents components of tensors in
this coordinate system for convenience. In the bar
coordinate system, the velocity components at the
initial location X can be expressed as vX)=(V,
0, Vo). It may be noted that T., and ¢ v,dt vary
with the closed trajectory orbits. Therefore, it is

obvious that a;"’:o and ——?:('(cﬁﬁgdt):o at the

1 1

initial X. Then it follows that F1,=Fy»=1, Fs=

F3:=0 according to Eq. (13) (see Appendix B for
an alternative derivation of this result). Therefore,
in the bar coordinate system, the deformation
gradient tensor F after one circulation, expressed
in Eq. (13), reduces to

0 F, O
FX, T.)=I-M=I+ 0 0 0} (7
0 Fa, 0

where F, and F‘gz can be obtained from

pet X7 aTar
F12(X| Trir) = Vl E ’

_ — 0T, 0 _
FolX, Ta)=—Vs =+ —= {9 vydt (18)
2(X ) 3 oX, oX, @ V3 )
From Eq. (16), F.. and Fy, after k-times the period
of recirculation can be expressed as:

FulX, kT.)=kFu(X, T.0),
FaX, kT.)=kFu(X, Ts) 19)

It may be noted that the physical significance of
F.: and Fy, is obviously the shear strain compo-
nent in the normal direction to the closed orbit
and that along the axial direction, respectively.
Thus, we propose / Fi,+F5 and a deformation
measure to characterize the deformation process
at the particular position X [4].

Now, it becomes of our interest to efficiently
evaluate the deformation gradient tensor F in the
bar coordinate system as a function of the initial
starting point, X. Fig. 2 schematically shows a pa
rticle trajectory in the x;-X, plane with several
positions indicated as x. Let's consider one of
those points, say, x;, as the starting position, X.
Then, the deformation gradient tensor F for the
starting position, x;, can be expressed by Eq. (17)
in the bar coordinate system defined at the lo-
cation x; as indicated in Fig. 2. Therefore, F‘lz(x»,
T.) and I_“gz (x;, T.») can be rewritten, instead of

Eq. (18), as:

T 7 Trtr
Fulx, Ta)=—V, aT (20)
x=x X2 [x=x
ouy —_— aTHI a
FSZ(X{, Trir) = V.’i —— + — <§ V;;dt)
x=x 9Xo | X=x 0X, X=xi

21
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l——»x1
X2

x1xz

Xo

Fig. 2. A particle trajectory orbit in the x;-x» plane
with a bar coordinate system defined at an
initial positon x;.

It might be noted that any point, x;, in Fig. 2 lies
on the constant streamline so that the following
mass conservation equation hold:

Vil LdR| =V ek @2)

X—xo X—x X=

where dX, represents the normal distance

one. With the help of Eq. (22), 6"[_‘,»,, and
B 0X, Ix=x

Gl ‘ﬁgdt) in Egs. (20) and (21) can be easily
aXQ X=xi

determined for each initial position x; once these
terms are evaluated at X=x, as a reference po-
sition. That is, applying Eq. (22) into Egs. (20) and
(21) finally results in the most convenient for
mulae for Fp, and Fy, as follows:

_ Vilew  oTs
F y Trw - = = (23)
IZ(XZ ) Vl ‘Xfxu aXZ X=x
— V:g |X7x' vl |X*x: aTur
F a T”y = —
(X ) j Vv, ’ij X, |x-x
Vilx=s
FERAL i,(gﬁ Tdt| (24)
A |X:xu 6Xz X=xo

In might be mentioned that, in using Eq. (23)
and (24), one has to determine the period of re-
circulation, T,,, or each closed orbit in the cross-
Section_ed plane, the tangential velocity compo-
nent, V,, and the axial velocity component, v,
along the closed orbit during the Runge-Kutta
integration of Eq. (1). Then, a deformation mea-
sure, defined by / Fi,+F%, can be easily dete-
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rmined over the entire cross-sectioned plane.

4. Conclusion

Concerned about the kinematicks of deforma-
tion in duct flows, the present paper proposes a
simple method to calculate a deformation mea-
sure over the entire cross section of a duct. The
simple method requires determining only the
velocity field, particle trajectories, and recircula-
ting time for each trajectory, thus obviating dif-
ficulties encountering in the numerical evaulation
of the velocity gradient tensor, especially when
there exist singlular corners like in an extruder
channel. With the help of the simple formulae,
Eqgs. (23) and (24), a deformation measure, defined
by v/ Fi.+F% in a cartesian coordinate system
aligned with the particle trajectory orbit, can be
easily determined over the entire cross-sectioned
plane.
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Appendix A

Instead of Eq. (14), Franjione and Ottino [1]
has mistakenly obtained the following expression
for M:

M=
- v, 0T, v, 0T. 0
X, 0X,
v, 0T v, 0T 0
oXi oXe
0 d
L —a—&@; Vzdt) —a—Xz@ ngt) 0_

(A1)

which should be compared with Eq. (14). The
derivation in [1] shoud be corrected as follows:
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An equation (which appeared just before Eq.
(10) in [17)

(A2)

should be changed to
X3+ 8x3= X3 +8X;+ f[Xc + 6Xc; T(Xc):] (As)

where T indicates T, in the present paper, the
subscript “c” denotes the cross-sectional portion
for the flow and f is defined as f[X, T(X)]=
[ v pdX., t)]dt.

f{X.+8X., T(X)] can be expanded about X. in
a Taylor series ignoring the second- and higher-

order terms as follows:

X, +8X, T(X)]
=1[X.+8X, T(X.+8X)]
—vsL0(X,, TX)IVx.T8X,
=X, T(X)]+VxfX.— va(X)Vx.T8X, (A4)

Applying Eq. (A4) into Eq. (A.3), with the de-
finition Sx[T(X)]=0—M)-8X,, results in the
third row in Eq. (14), instead of in Eq. (A.1).

Appendix B

Applying Eq. (2) into Eq. (1) results in:

do(X, t)

at =v(a(X, t)) with ¢(X, 0)=X B.1D

Differentiating the above equation with respect
to time yields:

do(X, ) _do(X, v
— o =L ) == (B2)
do(X, t)

Eq. (B.2) shows that

satisfies Eq. (5),

do(X, t)

which indicates that evolves in the same

way as dx. Therefore, Eq. (3) can be rewritten in

t
terms of do(X, ) instead of &x as follws:
do(X, t) do(X, t)
——=FX t) —— B.3
@t X, t at (B.3)

Since a fluid particle returns to its original
position in the x;-x, plane after one full circulation,
one may find that

d(I)(X, Trir) _ dq)(xv 0)
a ot

:(\71, 0, \—73) (B4)

in the bar coordinate system.

From Eqgs. (B.3) and (B.4) with det[F]=1 for
incompressibility, one can easily find that Fu=
Fr=1, Fs=F;=0.
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