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ABSTRACT

A linear method for determining three-dimensional motion of a rigid object
is presented. In this method, two three-dimensional line correspondences are
used. By using three-dimensional information of the features and observing
that the rotation matrix is unique regardless of the translation vector, the
two components of motion parameters (rotation and translation) are computed
separately. Also in this paper, the solution is given without a scale factor which
is necessary in other methods that use only the two-dimensional projective
constraints.

1. INTRODUCTION

Computer analysis of object motion is important in many applications, e.g.,
object tracking, robot vision, and other image understanding systems. In order to
analyze object motion by computers, the displacement of object in physical space
should be measured.

Early work was mainly concentrated on two-dimensional motion analysis. Origi-
nally, studying two-dimensional motion using computers was motivated by the study
of motion of clouds from satellite images (Leese et al. 1970). The analysis of three-
dimensional motion of an object from two-dimensional images is more difficult than
the analysis of two-dimensional motion. For example, rotation in three-dimensional
space is defined to be about a three-dimensional line while rotation in a plane is
defined to be about a point on the plane, and part of the object may disappear
from the views by self-occulsion due to rotation in space. Substantial research has
been conducted to estimate three-dimensional motion of objects from a sequence
of two-dimensional projections of a scene. Ulman (1979) used three views of four
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non-coplanar points to recover three-dimensional structure of a scene under the as-
sumption of parallel projection. Asada et al. (1980) also assumed parallel projection
in their interpretation of three-dimensional motion of blocks. Problems become
more complicated when the assumption of parallel projection is relaxed. The work
by Roach and Aggarwal (1980) was the first in which the problem was formulated us-
ing central projection. The authors used an overdetermined set of equations derived
from two views of six points or three views of four points to determine the movement
of objects from noisy images. The method by Nagel (1981) requires five points over
two frames. Recently, Tsai and Huang (1984), and Longuet-Higgins (1981) have
presented the eight-point linear method to find a set of essential parameters from
which the motion parameters are computed.

While all the works described above used point correspondences to determine the
displacement of objects in space, Yen and Huang (1983) and Mitiche et al. (1986)
used straight line correspondences over three frames. In Yen and Huang (1983), a
seven-line iterative method was used to determine three-dimensional motion of rigid
objects, and in Mitiche et al. (1986), a four-line over three-view system was used to -
determine the structure and motion of objects in space.

Most of the previous works involve solving complicated nonlinear equations and
usually these equations are solved using numerical methods. This subject, avoiding
nonlinear equations is the main focus of this paper. Recent development of inex-
pensive range acquisition systems, e.g., laser scanner, stereo vision systems, etc.,
makes it possible to analyze three-dimensional motion directly from range data. In
this paper the avoidance of solving nonlinear equations is accomplished by using two
pairs of three-dimensional line correspondences. The use of line correspondences is
more advantageous than that of point correspondences in noisy situations, because
the extraction of lines is less noise sensitive than that of points in general.

2. INTERPRETATION OF DISPLACEMENT EQUATION

The movement of rigid objects may be decomposed into a rotation about an
axis through the origin of a coordinate system and a translation. These motion
components can be determined by analyzing a sequence of time-varying images.
In order to describe a three-dimensional motion of an object, one of the following
equations is used in general.
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V and V' are position vectors of an object point at time instances of ¢; and i,
respectively, R is a rotation matrix about an axis passing through the origin of the
coordinate system, and T is a translation vector. Basically, equation (1) and (2)
result in the same movement over time interval t, —¢t, if V and V' in both equations
are the same points, respectively. However, the interpretations of two equations may
be different. In equation (1), the point is first rotated by R about an axis passing
through the origin of the coordinate system and translated by T, while in equation
(2), the point is first translated by T and rotated by R. Hereafter, the discussions
will be with equation (1) for convenience.

Let us consider a single point in space. Then, there are infinite number of ways
(sets of R and T) for V at ¢, to be V' at ¢,. However, if we consider a set of points
on a rigid object, there exists a unique set of R and T for all the points at £, to be
matched to corresponding points at t,. This is an important constraint to estimating
motion parameters of a moving object.

Now, let us consider a different rotational axis which passes through a point |74
on the plane which passes the origin and perpendicular to the rotational axis, i.e.,
V,-# = 0 (@ : orientation vector of rotational axis), then equation (1) becomes as
follows.

VI =RV+{-R)W.+T (3)
From equation (1) and (3), one can see clearly that rotational matrix R = R’ and
translation vector T = (1- R')Vc + T'. In other words, the rotation matrix is
independent of the location of rotational axis in space, however, translation vector
T depends on the location of rotational axis in space. Therefore, we can find the
rotation matrix and translation vector separately, and the rotation matrix is unique
regardless of translation vector.

3. ESTIMATION OF 3-D MOTION FROM LINE CORRESPONDENCES

In this section, a method is presented for estimating three-dimensional motion
of rigid objects from two three-dimensional line correspondences. Suppose two sets
of nonparallel three-dimensional line correspondences are established. Here, the
meaning of line correspondences is that a line L in space (not a line segment) is
moved to line L’ over a time interval ¢; — ¢;. Therefore, the useful information we
can get from these lines is only the direction cosines of each line. This ‘infinite line’
assumption is reasonable, because from two sets of range data we can hardly get
exact line segment correspondences between frames because of motion and possible
occulsion.
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From the assumptions, we are given four line equations as follows.
At time t, :

Vi=Vi+aAd (4)
Vo=V, + BB (5)
at time £, : . . .
Vi =V, +94 (6)
=V, + 0B (7)

where A, B and A", B are the direction cosines of two lines before and after motion
respectively, and «, 8, v and § are arbitrary real numbers.
The displacement equations of these lines over time interval ¢, —t, are as follows.

| =RV, +T (8)
, =RV, +T (9)

where rotation matrix R can be represented in terms of either rotation angle 9, @,
¥ about X, Y, Z axes or the orientation vector of rotational axis 7 and angle ©
about the axis.

cos®cos ¥ +5inPsinOsin¥  —cosPsin ¥ + sin Psin O cos ¥ sin Pcos©
R=| cosOsin¥ cos © cos ¥ —sin®© (10)
—sin®cos ¥ 4 cos ®sinOsin ¥ sinPsin ¥ + cosPsinOcos¥  cos Pcos©
or
n2+ (1~n?)cos® nyna(l — cos©) + n3sin©® ning(l —cos©) — n3sin O
nina(l — cos ©) — nzsin©® n2 + (1 — n%) cos© nanz(l —cos©) +nysin® | (11)
n1n3(1 — cos ©) 4 nysin© nynz(l —cos©) —nysin®© nf + (1 — n3)cos©

If we rewrite equations (8) and (9) in component forms, we have six nonlinear
equations with eight unknowns. However, based on the discussions in previous
subsection, we can first find a rotation matrix independently of translation vector,
and next find a translation vector given rotation matrix found. In other words, we
can find R and T in two steps separately, i.e., first rotate lines V, and V; about an
axis passing through the origin until they are parallel to V’ and V’ s1multa.neously,
and next translate until an arbitrary point P, on line V1 and % on Vg meet lines V1
and V! simultaneously.
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3.1 Finding Rotation Matrix

Let’s denote the rotation matrix R as follows, and treat each element of R as a
different unknown.

rn re T3
R = rs s 7Ts ‘ (12)
r7 rg Ty

Then, the first step described above can be represented as following equations.

A" =RA (13)
B =RB (14)

Furthermore, we can find the direction cosines of the third line in space simply by
Ax B (note that normalization is not necessary when used in equations, because
|A x B| = |A" x B'|). Let this third direction cosines be ¢ and ¢’ for before and
after motion, respectively. Then, we have another equation

C' =RC (15)
From equations (13), (14) and (15), we have nine linear equations with nine
unknowns, however, one should note that these are three sets of three linear simul-

taneous equations with three unknowns each.
Once r{s are found, for rotation matrix R represented as (10),

sin®@ = -rg (16)
sin® = ————r 17
V- )
sin¥ = —=
VI =13

For rotation matrix R represented as (11), we can find @ and from r}s in the
same manner, however in this case, we do not even need to solve any equation.
Because rotational axis should be perpendicular to both (4 — A’) and (B — B'), we
can compute the direction of rotational axis directly.

(F—Ayx (B - B)
"SIE =D x (BB (19)

; (18)
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However, a problem arises when (A — A’) and (B — B’) are parallel to each other.
This case occurs only when the rotational axis lies on the plane formed by vectors
A and B. In other words, it occurs when the rotational axis is perpendicular to the
normal of the plane formed by vectors A and B. Therefore, when the calculation of
7 using equation (19) fails, we can use the following equation.

< AxB)x (& -4
(Ax B) x (& - A)|

(20)

In equation (19), if (A — A") = 0, we can use (B — B') instead (in fact, when
(A—A) =0,7 = A, and when (B—B') =0, i = B, if both (A — A") and (B B)
are zero, the motion is pure translation).

Once the orientation vector of rotational axis is found, rotation angle is simply
the angle between two planes formed by # and A, and 7 and A’. Therefore,

cos© = (7 x A) - (7 x A) (2.1)
|7 x Al|7 x A
In calculation of cos© using equation (21), if @ = A, we can use vector B and B

instead of A and A’, respectively.

3.2 Determination of Translation Vector

Once a rotation matrix is found, we have two sets of parallel lines in space to be
matched simultaneously by a single translation. If we have only one set of parallel
lines in space, there are infinite number of ways of translation for the lines to be
matched, however, if we consider two or more sets of such lines, there exists a unique
translation to be matched simultaneously. From equations (4) to (9),

R(V,+ ad)+ T =V, +vA' (22)
R(Vo,+BB)+T =V, + 6B (23)

Equations (22) and (23) seem to give us six linear simultaneous equations with
seven unknowns, but note that o, 8, v and & are arbitrary real numbers. In other
words, if we select an arbitrary point on each of lines V, and V2, and if we can find
the corresponding points on the lines V’ and V2 after translation, that translation
is what we want to determine. Therefore, by substituting & = 8 = 0 in equations
(22) and (23), we have six linear equations with five knowns.
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RV, +T =V, + A (24)
RV,+T =V, + 6B (25)

Solving equations (24) and (25) is straightforward.
In the case of using point correspondence, we can determine translation vector
T directly using the equation (1).

4. CONCLUSION

In this paper, a simple method for determining three-dimensional motion of
a rigid body from two-dimensional line correspondences has been presented. The
concept that rotation matrix is unique regardless of translation makes it possible
to find two components of motion separately and makes the problem simple. This
concept may be useful in determining three-dimensional motion from projected data
and it will be the future problem to be investigated.

For the case of one line and one point correspondences, we can always find -
another line in object domain which passes through the point and meets the line
perpendicularly. Therefore, the problems become the same as described in this
paper. In other words, two lines, or one line and one point, or three points are the
minimum requirements to determine three-dimensional motion of rigid objects in
space.
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