Function Properties of Low Density Lipoprotein (LDL) and Oxidized-LDL

저밀도 지질단백질 및 산화 LDL(Oxidized-LDL)의 특성

  • Tae-Koong Kim (Dept. of Biolochemistry, Kangwon National University)
  • Published : 1994.06.01


All lipoproteins are made up of three major classes of lipids : triglycerides, cholesterol, and phospholipids. Lipoproteins vary in their relative content of these lipids as well as in size and protein content. Human low density lipoprotein (LDL) is a main carrier for cholesterol in the blood stream, and it is well established that cholesterol deposits in the arteries stem primarily from LDL and that increased levels of plasma LDL correlated with in increased risk of atherosclerosis. Various lines of research provide strong evidence that lDL may become oxidized in vivo and that oxidized-LDL is the species involved in the formation of early atherosclerotic lesions. the most crucial findings in this context are the following : (1) Oxidized -LDL has chemotactic properties and if present in the intimal space of the arteries would recruit blood monocytes which then can develop into tissue macrophages ; (2) marcrophages take up oxidized-LDL unregulated to from lipid laden foam cells ; (3) Oxdized-LDLis highly cytotoxic and could be responsible for damage of the endothelial layer and for the destruction of smooth muscle cells.


  1. Heart Disease and Stroke v.1 Lipoproteins Brown,V.B.
  2. J. Korean Soc. Food Nutr. v.23 Dietary lipid and atherosclerosis Cho,S.H.
  3. The FASEB J. v.6 Lipoprotein receptors, plasma cholesteroi metabolism, and the regulation of cellular free cholesterol concentration Fielding,C.J.
  4. Eur. J. Clin. Invest. v.22 Plasma triglyceride and LDL metabolism Caslake,M.J.;Packard,C.J.;Shepherd,J.
  5. Biochim. Biophys. Acta. v.1085 Cholesterol transport between and HDL Johnson,W.J.;Rothblat,G.H.;Phillips,M.C.
  6. Arch. Biochim. Biophys. v.279 Free radical-mediated chain oxidation of LDL and its synergistic inhibition by vitamin E and C Sato,K.;Shimasaki,H.
  7. N. Engl. J. Med. v.320 Beyond cholesterol : Modification of LDL that increase its atherogenecity Steinberg,D.;Carew,T.E.;Witztum,J.L.
  8. Arteriosclerosis v.9 Structure of apo β-100 of human LDL Yang,C.Y.;Gu,Z.W.;Kim,T.W.;Gotto,A.M.;Chan,L.
  9. J. Biol. Chem. v.262 The LDL-receptor Davis,C.G.;VanDriel,I.R.;Brown,M.S.;Goldstein,J.L.
  10. Int. J. Biochem. v.22 Tetravalent vanadium-mediated oxidation of LDL Dickson,C.;Stem,A.
  11. Science v.232 A recepto-mediated pathway for cholesterol homeostasis Brown,M.S.;Goldstein,J.L.
  12. Annu. Rev. Cell. Biol. v.1 Receptor mediated endocytosis Goldstein,J.L.;Brown,M.S.;Anderson,R.G.W.;Schneider,W.J.
  13. Am. J. Clin, Nutr. v.53 Oxidation of lipoproteins and atherosclerosis Luc,G.;Fruchart,J.C.
  14. J. Cell Sci. Suppl. v.9 Macrophage lipoprotein receptors Fogelman,A.M.;Warden,C.;Harberland,M.E.;Edwards,P.A.
  15. Nature v.343 Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils Kodama,T.;Freeman,M.;Zabrecky,J.;Kriegman,M.
  16. Eur. Heart. J. Atheroma formation : defective control in the intima round-trip of cholesterol Kovanen,P.T.
  17. Biochem. J. v.262 The action of defined oxygen contered free radicals on humany LDL Bedwell,S.;Dean,R.T.;Jessup,W.
  18. Free Radical Res. Commun. v.6 Continuous monitoring of in vitro oxidation of human LDL Esterbauer,H.;Striegl,G.;Rotheneder,M.
  19. Biochem. Soc. Trans. v.18 Endogenous antioxidants and lipoprotein oxidation Esterbauer,H.;Puhl,H.;Tatzber,F.
  20. Chem. Res. Toxicol. v.3 Biochemical, structural and functional properties of oxidized-LDL Esterbauer,H.;Waeg,G.;Jurgens,G.
  21. Am. J. Clin. Nutr. v.54 Ascorbic acid protects lipids in human plasma and LDL against oxidative damage Frei,B.
  22. Oxidative Stress Oxidation of LDL in vitro Gebicki,J.M.;Jurgens,G.;Esterbauer,H.
  23. Free Radical Res. Commun. v.8 17 beta estradiol inhibits LDL oxidation and cholesteryl ester formation in cultured macrophage Huber,L.;Poll,T.;Dresel,H.A.
  24. Chem. Phys. Lipids. v.45 Modification of human serum LDL by oxidation-characterization and pathophysiological implication Jurgens,G.;Hoff,H.F.;Esterbauer,H.
  25. Biochem. Biophys. Acta. v.917 Oxidation of LDL by thiol compounds leads to its recognition by the acetyl LDL receptor Parthasarathy,S.
  26. Annu. Rev. Cell. Biol. v.6 Clathrin, adaptors, and sorting Pearse,M.S.;Robinson,M.S.
  27. J. Biol. Chem. v.262 Oxidation of human LDL results in derivatisation of lysine residues of apoprotein β by lipid peroxide decomposition products Steinbrecher,U.P.
  28. J. Biol. Chem. v.264 Recognition of oxidized LDL by scavenger receptor of macrophage results from derivatisation of apo β by products of fatty acid peroxidation Steinbrecher,U.P.;Kwan,W.C.;Dirks,M.
  29. Free radicals. Biol. Med. v.3 Free radical modification of LDL : Mechanism and biological consequences Heinecke,J.W.
  30. TIBS v.17 Molecular flypaper atherosclerosis : structure of the macrophage scavenger receptor Krieger,M.
  31. Biochem. J. v.265 Alpha tocopherol consumption during LDL oxidation Jessup,W.;Scott,J.;Ieaks,D.S.
  32. Atherosclerosis v.81 Vitamin E content and LDL oxidizability induced by free radical Babiy,A.;Gebicki,J.M.;Sullivan,D.R.
  33. Biochem. Soc. Trans. v.15 Effect of oxygen-centered free radicals on LDL structureand metabolism Bedwell,S.;Jessup,W.
  34. Annu. NY Acad. Sci. v.570 The role of vitamin E and carotenoids in preventing oxidation of LDL Esterbauer,H.;Striegl,G.;Puhl,H.
  35. The mechanism of autoxidation : Autoxidation of unsaturated lipid Chan,H.W.S.
  36. J. Biol. Chem. v.263 Mutation analysis of the ligand binding domain of the LDL-receptor Esser,V.;Limbird,L.E.;Brown,M.S.;Goldstein,J.L.
  37. Proc. Natl. Acad. Sci. v.86 LDL undergoes oxidative modification in vivo Palinski,W.;Rosenfeld,M.E.
  38. Biochim. Biophys. Acta v.1044 HDL inhibits the oxidative modification of LDL Parthasarathy,S.;Barnett,J.;Fong,L.G.
  39. Biochim. Biophys. Acta v.988 The low density lipoprotein receptor Schneider,W.J.
  40. J. Lipid Res. v.30 An immunochemical marker of LDL oxidation Zawadzki,Z.;Milne,R.W.;Marcel,Y.L.