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Simulation Output Analysis using Chaos Theory

2y g0 & ™
Hyung-Sool Oh and Young-Hae Lee

waiting time in M/M/1(o0) queueing model.

{TAbstract 3

In the steady-state simulation, it is important to identify initialization bias for the correct
estimates of the simulation model under study. In this paper, the methods from chaos theory are
applied to the determination of truncation points in the simulation data for controlling the initial
bias. Two methods are proposed and evaluated based on their effectiveness for estimating the average

1. Introduction

A simulation method has been used broadly to
evaluate the performance of the system under study,
especially when the quantitative analysis using
mathematical models is not applicable. The initial
conditions of the stochastic simulated system may be
different each time the simulation is run. And the
estimation of true responses in the steady-state
simulation is so complicated because of the possible
presence of initial bias. So, in studies of the steady-
state characteristics of a simulation model, it is
important to identify initialization bias. Many research-

ers have proposed the methods for determining the
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truncation points(or warm up period) to control initial
bias, but these methods seem not to work well as
intended.

Variations of the system observations in the transient
state are large and irregular due to initial bias as
compared to those in the steady state. 1n this paper,
we first propose how to measure the difference
between the system vatiation in the transient state and
the variation in the steady state and then develop two
methods to determine truncation points that can be
used in eliminatinng initial bias of the system,

We evaluate the performances of the two proposed
methods based on their effectiveness in estimating the

average waiting time using an M/M/1(o0) queueing
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model, These results are also compared with the

method suggested in the literature,
2. Reconstruction of State Space

Until recently, the motions of determinism and
randomness were seen as opposites, and were studied
as seperate subjects with little or no overlap.
Complicated phenomena were assumed to result from
complicated physics among the processes. Simple
dynamic systems were assumed to produce simple
phenomena, so only simple phenomena were modeled
deterministically[2,4,5].

Chaos provides a link between deterministic systems
and random ptocesses. The chaotic dynamics in a
deterministic system can amplify small differences.
Also, chaos implies that not all random-looking
behavior is the product of complicated physics. An
important consideration in chaos theory is the dimen-
sion of the dynamics, which is to estimate the fractal
dimension of a hypothesized ’strange attractor’, to
define the asymptotic solution of a dynamic system, in
a reconstructed state space. And a dimension of the
dynamics counts the minimum number of degrees of
freedom necessaty to describe this motion, To estimate
a dimension for a time series, we must first reconstruct
a state space. The past behavior of a time series
contains information about the present state x(t). And
so, if the delay time 7 is assumed uniform, the state
at time t x(t) can be reconstructed as a delay vector

of dimension m,
X(t) = (x(t), x(t-1),..., x{(t-(m-1) - 7)) (2.1)

where m is called the embedding dimension.

If a time series is deterministic and of finite
dimension, the estimated dimension of the reconstruct-
ed attractor should converge to the dimension of the
strange attractor as the embedding dimension is

increased. On the contrary, if a time series is random,

the estimated dimension should be equal to the
embedding dimension[1,6]. The Dimension that is

considered in this paper is expressed as follows[1] :

1 N N
C(r) = lim 5 X EH(r—lxi-le) (2.2)
=0 N i=1 =1
where 5 0
_ R, ifs
H(s) = {0, ifs (0

N ! total number of points x; in the recontructed
state space.

r © length of side for small cubes,
3. Lyapunov Exponents

Suppose one has the ability to measure a position
with accuracy Ax and a velocity with accuracy Av,
Then in the position-velocity plane (known as the
phase space) we can divide up the space into areas of
size &x + Av as shown in Figure 3.1. If we are given
initial conditions to the stated accuracy, we know the
system is somewhere in the shaded box in the phase
plane, But if the system is chaotic, this uncertainty
grows in time to N(t) boxes as shown in Figure 3.1.
b[1].

The Size of uncertainty at time t, N(t) can be

expressed as follows
ht
N(t)=N(0)e (3.1)

where constant h is related to the concept of entropy
in information theory and will also be related to
another concept called the Lyapunov exponent[1]. The
test using Lyapunov exponent measures the sensitivity
of the system to the change in the initial conditions.

Conceptually, one imagines a small ball of initial
conditions in phase space and looks at its deformation
into an ellipsoid under the dynamics of the system, If
d(t) is the maximum length of the ellipsoid at time
t and d{Q) is the initial size of the initial condition

sphere, the Lyapunov exponent A is interpreted by the
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(Figure 3.1) The growth of uncertainty in a dynamic
system

equation (3.2) in the reconstructed state space[1].

At
d(t) = d(0)2
_ L d)
A = ;l()gz 30) (3.2

There is a relationship between Lyapunov exponent

which test the stability of chaotic system and
eigenvalue which test the stability of dynamic system,
and also a relationship between Lyapunov exponent
which test the sensitive dependence on initial condi-
tions and enttopy which measure the growth of
uncertainty,

The sign of Lyapunov exponent provides a qualita-

tive picture of a system’s dynamics such as

A > 0 : chaotic motion

A = 0 : regular motion, (33)

A chaotic system must have nonlinear elements or
properties. A linear system cannot exhibit chaotic
vibrations, The notion of a Lyapunov exponent is a

generalizaiton of the idea of an eigenvalue as a measure

of the stability of a fixed point. For a chaotic
trajectory, it is not sensible to examine the instantane-
ous eigenvalue of a trajectory, The best quantity,
therefore, is an eigenvalue averaged over the whole
trajectory. The idea of measuring the average stability
of 2 trajectory leads to the formal notion of a
Lyapunov exponent.

Mathematically, Lyapunov exponent A is defined by
the equation (3.4)[3].

1 4 L‘(y)
A= —— Jlog +r—" .
tyy~to kzll og: I.(tk_” (34)
where
L(tk~1) Euclidean distance between the initial

point and the nearest neighbor,
L/(ty) : Euclidean distance between the initial point
and the nearest neighbor at a later time t,.
A schematic representation of the evolution and

replacement procedure is shown in Fig. 3.2[3].

(Figure 3.2) A schematic representation of the
evolution and replacement procedure

The magnitudes of the Lyapunov exponent quantify
an attractor’s dynamics in information theoretic terms,
The exponent A measures the rate at which system
processes create or destroy information[12] ; thus the
exponents are expressed in bits of information per unit
time or bits per orbit for a continuous system and bits

per iteration for a discrete system.
4. Simulation Qutput Analysis

When the goal of a simulation experiment is to
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estimate the value of steady state parameters, the initial
conditions of the simulation usually bias the estimators,
This problem is patticularly troublesome when several
independently seeded runs of the simulation are made
and the results are used to construct confidence
intervals. The frequency with which confidence inter-
vals based on biased outputs include the true
performance value generally decreases as more runs are
made. This is caused by the intervals shrinking about
an inaccurate point estimator, The literature on
simulation methodology contains some techniques for
controlling initialization bias as follow, These tech-
niques ate often too elaborate and offer no assurance
that initialization bias will be effectively controlled.

The survey by Gafarian et al[7] indicated that
published procedures for indentifying a truncation
points appear not to exhibit very good behavior,
Kelton and Law[8,9] investigated the deletion effect
of initialization bias for the three types of point
estimator critetia using a particular stochastic model,
Schruben et al.[10,11] ptresented a family of tests for
detecting initialization bias in the mean of a simulation
output data using a hypothesis testing framework. Cash
et al.[13] evaluated the power of a family of tests for
initialization bias,

Variations of the system observations in the transient
state are large and irregular due to initial bias as
compared to those in the steady state. In this research,
we first propose how to measure the difference
between the system variation in the transient state and
the variation in the steady state and then develop two
methods to determine truncation points that can be
used in eliminatinng initial bias of the system.

The equations like (4.1) or (4.2) in Table 4.1
measures the level of wvariations of the system
observations over time. The level of varitions is then
analyzed using the chaos theory to ascertain whether
or not the difference in the varitions is significant. The
chaos theory used for this purpose has some good

features. One good feature is that it can classify

dynamic characteristics of the system into the regular
motion, the chaotic motion, and the random motion
without knowing any information about the input
parameters, This classification process is done accord-
ing to reconstruction state space, dimension, and
Lyapunov exponent that are based on the time series
of the system of under study.

To test the effectiveness of equation (4.1) and
(4.2), the equation are applied to given simulation
output data in Table 4.1. The obtained time series
data, reconstructed state space, dimension using equa-
tion (2.2), and Lyapunov exponent using equation
(3.4) for two equations are also shown in the Table
4.1. '

As seen in the time series of the equation in Table
4.1, equation (4.1) does not illustrate the system
varition sufficiently. Also, since the reconstruction
attractor has an infinite dimension and Lyapunov
exponent results in a positive value, the variation rate
evaluted using equation (4.1) is under the random
motion, This implies that equation (4.1) fails to
distinguish the transient state from the steady state,

On the contrary, when equation (4.2) is used, the
time series of the equation indicates the system
variation correctly. Since the reconstruction attractor
has a finite dimension and Lyapunov exponent tesults
in a negative value, the varition rate seems under the
regular motion. This also states that the difference of
variation rates between the transient state and the
steady state is significant,

Based on these results, we propose two methods M1
and M2 using equation (4.2) for the determination of
truncation points, The undetlying concept of the two
methods is that they determine truncation points based
on the system variations in order to control initial
bias. This is quite different from the concept of the
existing methods in which truncation points are
decided using the mean and the variance of the output

data,
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(Table 4.1) An example of a dynamic characteristics for given simulation output data.

Simulation e
Output Data
[ 108 270 % 450
e
‘le'xl! X1
Equations log, -r— 41) log,—— (4.2
a g Ixi'x}~1 ( & ¥
. X(L) versus t X{t) versus t
1
Modified
Time Series x ‘6 ~
by
Equations
7 I ——— 2!
1 time o 1 tine M
K(E) s K(t-1) vz X(4-2) X(L) vs X(t-1) vs X(t-2)
X(L) t) T
Reconstructed . %
State Space )
K(t-2) X(t-1) X(t-2) At-1)
Dimension [es} 4
Lyapunov Exponent 0.587 -0.002
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5. The deletion Strategies

Initialization bias can be a major source of error in
estimating the steady state value of a simulated system
performance measure, Lyapunov exponent A which
decides whether convergence or divergence of a
trajectory is applied to deciding how much data to be
deleted which is called truncation points in simulation
output data. The methods to be used in the

experiments are as follow.

1) Method 1(M1)
The first method uses A, for deciding truncation

point represented by equation (5.1).

X4

K
- %igbg? ,k=12.n1 (51)

X

where
X; . average waiting time in queue for up to the
i-th customer from the first customer in
M/M/1(c0) with arrival rate A, service rate .
n : run length (total number of observations in
simulation output data).
The criteria for A, to decide the truncation points
are as follow,
- criterion 1(C;) {A,| must be less than the
specified value.
The specified values for average variation rate 5%
and 10% are obtained to be 0.036 and 0.07 respectively

as follows,

0.036

logz[a(lzt:).OZS)] _

logz[w] = 0.07.

- criterion 2(C,) :

ously.

A, must be decreased continu-

A variation is decreased if system'’s behavior comes
to be the steady state, and the average variation rate

can be decreased gradually,

2) Method 2 (M2)

Pattition n simulation data x,x,...,X; into b nonover-

lapping batches in which each batch has m observa-

tions such that n=b - m, and define the following

functions of the original data for i=1, 2, .., b.
1< X(i- '
A = =3log, —ml (5.2)
mj=, X(i-1)m+1
where
X()m+j - Average waiting time in queue for up to

the j-th customer in i-th batch.
- criterion  3(Cy) |A;] must be less than the

specified value.

This criterion C; is equal to the criterion Cy.

3) Method 3 (M3)

The deletion strategy suggested by Cash et al.[13]
is as follow. First, compute the below values for i=
1,2,..,b and j=12..,m. And perform the F test with
£=0.25, the fraction of the batches used to compute
the variance estimator ; if the null hypothesis of no
initial condition bias is rejected, delete the first 25%
of the data and apply the test again to the remaining
data, If the null hypothesis is accepted, retest at f=
0.5 and next at £=0.75.

_ 1 j
Xij = T{/:-Xu-nmﬂ

Jr=1

i = Xim ~ X,

K; = max{j - §;;}, for 1= j =m

Si = KiX§is Kl
b m §f
anax = Z _
i=1 Ki (m Kl)
_ Qmax
Vmax - 3b
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6. Experimental Results

M/M/1(o0) queueing model was used to evaluate
the petformance of methods. In order to gather the
data, we executed the simulation using the following
conditions, Simulations are conducted with the utilities
=07 (1/A=14.29, 1/ #=10.00) and =09 (1/A=
11.11, 1/£#=10.00). Each experiment involved 10
independently seeded replications in which each has
500 observations of customer waiting times in the
queue, The decreasing length for C, considered in this
experiment would be 195 times and 200 times.

To evaluate the effectiveness of the methods, the

criterian in equation (6.1) was used.

| Wy W, |

- (6.1)
W,

\xihere | e

Wq = ‘l; i:lXj

=1 s - _

xi o n-1 j=1+1xij1 J 1,2,...,1(,

Wq : theory value of average waiting time.

x; - average waiting time of i-th customer in j-th

replication.
n : run length of each run,
1 ! truncation point in each run,

k I number of replications.

The cases of experimentals for the deletion strategies
are shown in Table 6.1 and their experimental results

are shown in Table 6.2.
Experimental results can be summarized as follow,

1) In case of p=0.7

With respect to point estimators and equation (6.1),
A, and B; produced good results among the cases of
the method M1 and M2 respectively. By the comparis-

on of the three methods, we could conclude that the

method M2 shows the best result with respect to point
estimator, Comparisons of A,(M1), By(M2), D,(M3)

for each run are shown in Fig. 6.1.

10 — —@—A4
—i—B3
—k— D1
1
Bias 7 8 10
0.1 v
0.01

No. of Replications
(Figure 6.1) Comparisions of Deletion Strategies for
p=0.7.
2) In case of p=0.9
With respect to point estimator and equation (6.1),
the case Ay of the method M1 produced the best
outcomes, For the method M2, we did not consider
the results by By, By and By, since they failed to find
truncation points, Among the rest three cases of Bg,
By and By, By yielded the best outcome regarding to
point estimator and equation (6.1). Throughout the
evaluation of the three methods, we observed that the
method M2 had the best result. Comparisons of Ag
(M1), Bp(M2), D{(M3) for each run are shown in
Fig. 6.2.

100 —&-—A8
~—i—B10
—k—D2
10
Bias 1 X
2 3 4 [ 7 8 9 10
01
0.01

No. of Replications

(Figure 6.2) Comparisions of Deletion Strategies for
p=0.9.

7. Conclusions

Initialization bias is the most troublesome problem
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(Table 6.1) The cases of experiments for deletion strategy

Deletion strategy cases

A =07, G=0036, C=19
A, =07, G,=0036, C=200
A, =07, C=007, C=1%
A, p=07, G=007, C=200

Method 1
A, p=09, G=0036 C=1%
As =09, G=0036, C=200
A =09, C=007, GC=1%
Ag =09, G=007, C=200
B, =07, ¢=0.036, G=30
B, =07, G=007, G=30
B, p=07, C=0036, G=40
B, =07, =007, G=40
B; £=07, G=0036, G=30
B, P=07, G=007, G=50

Method 2
B, =09, ¢=0036, =30
By p=09, =007, G=30
By =09, C=0036, C=40
By P=09, G=007, G=40
By =09, C=0036, C=50
By =09, C=007, G=50

Method 3 D P07
D, ,=09

C, : Condition for variation rate in M1.
C,  Condition for decreasing length in M1,
G, * Batch size for M2,

in evaluating system’s responses correctly using simu-
lation output data. Two methods have been proposed
to handle this problem using chaos theory.

The suggested methods have been compared with
the method by Cash et al.[13] using M/M/1(o0). We
could find that the method M2 with C,=0.07 and
Cy;=40 among the three methods produced the best
results with respect to £=0.7 and £=0.9. Truncation

point cannot be found in some cases. This means that

system behavior fails to reach steady state, with the
given the present run length. For these cases, we could
natually think that the run length should be increased
to get more data. )

Further researches are needed to determine the
truncation points and the appropriate of the given run
length simultaneously. Some statistical work -is also
required to determine the most appropriate criteria to

be used in the proposed methods.
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(Table 6.2) Performances of Deletion Strategies

Deletion Strategy input Data W, |W,-W, | W,
A 22.733 0.0248
A 22971 v 0.0145
=07 23.310
Ag 22.846 0.0199
Ay 23.084 0.0097
Method 1
As 85.248 0.0537
Ag 86.525 0.0396
=09 90.090
Ay 85.676 (.0490
Ag 87.074 0.0335
B, 23.064 0.0106
B, 22.820 0.0210
Bs 23.203 0.0046
0=0.7 23.310 ]
B, 23.019 (0.0125
Method 2 Bs 23.07 0.0103
Bs 22.926 0.0165
Bs 90.493 0.0045
£=09 By 90.120 90.090 0.0003
Bp 88.097 0.0221
=07 D, 23.028 23.310 0.0121
Method 3
£=09 D, 93.966 90.090 0.0430
Reference Systems, John Wiley & Sons, 1991.
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