Abstract
A polymer reinforced grouts using ordinary portland cement mortar and water soluble polymer{polyvinyl alcohol(PVA), styrene-butadiene rubbre(SBR), etylene-vinyl acetate copolymer(EVA)} were made. The mechanical properties of the hardened specimens were investigated through the observation of the microstructure and application of fracture mechanics. When the PVA, SBR and EVA was added with 1.5 wt% to the grouts, the compressive strength were about 54 MPa, 63 MPa and 68 MPa respectively, and the flexural strength was about 11 MPa, 12.8 MPa, and 13.6 MPa respectively, and Young's modulus was about 3.8 GPa, 4.4 GPa and 4.6 GPa respectively, and critical stress intensity was about 0.73 MNm-1.5, 0.85 MNm-1.5 and 0.9 MNm-1.5 respectively. It can be considered that the strength improvement of polymer mortar grouts may be due to the removal of macropores and the increase of various fracture toughness effects, such as grain bridging, frictional interlocking and polymer bridging.