Abstract
For the preparation of short ceramic fibers of which average length might be in accordance with the opening size of sieve, e.g., 150${\mu}{\textrm}{m}$ or 300${\mu}{\textrm}{m}$, bulk fibers were grounded on sieve screen by applying both compressing and shearing force, and passed through the sieve screen. The grounded fibers were subjected to gravitational settling processes. The classified fibers were observed by scanning electron microscopy and the length of each fiber was measured to correlate the average length with the opening size of the sieve used for grinding bulk fibers. Theoretical analysis show that a free settling technique is ineffective for the classification of fibers by length compared with that of particles. The average lengths of classified fibers estimated by scanning electron microscopy were in good agreement with those obtained by relative packing volume of the fibers. Accordingly, it is confirmed that average fiber lengths can be determined from bulk volume data without photographing, counting and averaging results for hundreds of fibers.