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Waiting Times in the B/ G /1 Queue with
Server Vacations

Seung Jong Noh

Abstract

We consider a B/G/1 queueing system with vacations, where the server closes the gate when it
begins a vacation. In this system, customers arrive according to a Bernoulli process. The service
time and the vacation time follow discrete distributions. We obtain the distribution of the number
of customers at a random point in time, and in turn, the distribution of the residence time
(queueing time —+ service time)for a customer. It is observed that solutions for our discrete time
B/G/1 gated vacation model are analogous to those for the continuous time M/G/1 gated va-

cation model.
1. Introduction

We consider a discrete time B/G/1 gated queueing system with vacations where the server
closes the gate when it begims a vacation. Analytical models exist for the continuous time
M/G/1 gated queueing system with vacations where the gate closes when the server ends a
vacation [3]. It is intuitively appealing that two different gate-closing policies(where the gate
closes when the server emds a vacation. vs. when it begins a vacation) will make no difference
in performance measures and that the continuous time model and the discrete time model will
result in analogous solutions. However, to our knowledge, the system we consider here has not
been analyzed before. This motivated our study.

Time is divided into consecutive fixed-length slots. Customer arrivals are assumed to occur
at the beginning of each time slot according to a Bernoulli process. The service time and va-
cation time are limited to take only nonnegative integer multiples of a slot time. The system
is assumed to have infinite buffer with FCFS queueing discipline. We obtain the distribution
of the number of customers at a random point in time, and in turn, the distribution of the

residence time(queueing timeservice time) for a customer.
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2. Analysis

The gated service mechanism we consider is different from that usually considered in the
literature in which the server closes the gate when it returns from a vacation and serves the
customers that arrived during the previous cycle. In our model, the server -closes the gate
when it begins a vacation. That is, if we number the sequence of vacations and service
periods as(v,, t,), n=1,---, then the customers arriving during vacation v, and service period t,
are served during t.+.

It is well known that for several specific models of an M/G/1 queue with vacations, the
following property holds [3].

M/ G /1 Decomposition Property. The stationary number of customers present in the sys-
tem at a random point in time is distributed as the sum of two or more independent random
variables, one of which is the stationary number of customers present in the correspending
standard M/G/1 queue (ie., the server is always available) at a random point in time.

Fuhrmann and Cooper demonstrate that this decomposition property also holds fof a very
general class of M/G/1 queueing models including the standard gated system [2]. It can eas-
ily be seen that the M/G/1 decomposition property also holds for our B/G/1 gated model

The result obtained by Fuhrmann and Cooper is stated in the following Lemma.

- _1—a(z) _
Lemma glz) = f(z) (D=2 n(z), (1)
where g( - ) = the p.gf. for the stationary distribution of the number of customers that a

random departing customer leaves behind in the vacatin system,

f(-) = the pgf for the stationary distribution of the number of customers already
present when a vacation begins,

a{ - ) = the p.gf. for the stationary distribution of the number of customer that arrive
during a vacation,

n(+) = the p.gf. for the stationary distribution of the number of customer that a
random departing customer leaves behind in the corresponding standard M/G/1 queue (ie.,
the server is always available). [ |

In the following discussion, we first derive f( - ), a(-), and n(-) for the general discrete

time gated system with vacations where the gate closes when the server begins a vacation.
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2.1 Derivation of =(:)

Let b, denote the probability that a service takes k slots of time, k=0, 1, 2,---, and let B(z)

denote its z-transform. By definition,
Bz) = % b (2)
Let P; denote the probability that j customers arrive during a service. Then,
P o= L(K) P00 =012 - @)

Note that the term p in (3) is the parameter for a Bernoulli arrival process.

If we now define the probability generating function of the number of customer arrivals dur-

ing a service period as
h(z) = ¥ p2, (4)

then, it is easily seen that

n(z) = z—h(z) ’ (5)

where p=pg’ (1) (see[1], pp. 212-216, for an analogous result in continuous time).
Substituting (3) into (4), we have

h@) = % £ () pa-pbe = £ 1K) eoia-prn,
= = b(1-p+p)* = p(1—p+pa). )

Substitution of (6) into (5) gives

(1~-p)(z—1)B(1—p+tpz) v
z—p(1—p-+pz) )

n(z) =
2.2 Derivation of «(-)

Let v, denote the probability that a vacation takes k slots of time, k=0, 1, 2---, and let @

(z) denote its z-transform. By definition,
0 = 2;0 Vka. (8)
Let Q; denote the probability that j customers arrive during a vacation. Then,

Q= Z (13 JPL=p)Pv,  j=0, 1, 2=, ()

)
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Therefore, ‘
x(z) = :0 Q7 = ,So é)(g‘) pP(1-p) g = éo éo(i‘) (p2)'(1-p)*wi
= éo (1—p+pz)kvk = E)(l"'p‘i‘pz). (10)

2.3 Derivation of f(:)

The term f(-) is derived as follows. Note that the gate closes when the server begins a va-
cation. Let N denote the number of customers present in the system when the vacation
begins. Then,

P(N=j} = % PN=k} A{j|V+B"), (11)

where A{j|V+B**} is the probability of j arrivals during {a vacation followed by the sum of
k service periods}. Note that B*“ is the convolution of k independent services. Also note that
V and B*® are independent.

Let b{" denote the probability that a k-fold service period takes j slots of time. Also let g%

(2z) denote its z-transform. Then, since the service times are independent, we have
p¥() = % b7 = {B(z)}" (12)
f
Let A{jlm, n} denote the probability of j arrivals during a vacation of length m (units in
slots of time) followed by a service period of length n. Then, conditioning on the number of

arrivals during the vacation, we obtain

m

Afjlm, n} = l};g(“i“)p‘(l-p)“‘" (j’_ll)p"“(l—p)“"j"’. (13)
Thus,

AGIVHB) = % 3 Afim, nvb

= &, L L (1) pa-pm () P -p) 0Pl (14

From (11) and (13), we obtain
f(z) = ,}; P(N=j}Z = P(N=k} A{j | V+B*¥}y
- B & rov-o{ £ 5 £ (1) pamem ) rampran

After some modest algebra, the above equation reduces to
f(z) = f{p(1—p+pz)} B(1—p+pz). (15)
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Refer to <Appendix> for the detailed derivation of equation (15). Note here that
B(1—p-+pz) is the z-transform of the number of arrivals during a service period and @

(1—p+pz) is that during a vacation period.
2.4 Derivation of the residence time distribution

In equations (7), (10), and (15), we derived the discrete time version of f(-), a(:), and
n(+) in terms of B(-) and @(-). It is interesting to note that the term (1—p-pz) in f(:),
a(-), and n(-) is replaced by (i—Js) in the well known continuous time case where the server
closes the gate when it returns from a vacation.

Now we let W(-) denote the distribution function of the residece time (queueing time =+ ser-
vice time) of an arriving customer in a vacation system with a FCFS queueing discipline, and
let W(-) denote the z-transform of W(-). Let W,(-) and W,(-) denote the analogous functions
for the corresponding standard B/G/1 queueing system (the system without vacations).
Remark 1 Note that g(-) and n(-) are also the p.g.f. for the number of customers present in
a vacation system, and in the corresponding standard system at a customer arrival epoch.
This alternate interpretation follows from a theorem by Burke(see [1], pp. 187).

Remark 2 Note that under a FCFS queueing discipline, the customers that a departing cus-
tomer leaves behind are precisely those customers who arrived during the departing customer’s
residence time. '

Thus, if we let w, k=0, 1,.--, denote the probability mass function of the residence time in

the corresponding standard system, then

n(z)

k

L (5)pa- w2 = £ 5 (%) ra-p)w,

=j k=0 j=0

l
e

=0

= &, w(1-p+p2)* = Wi(l-p+pa). (16)

It is easily seen that the same argument holds for the vacation system. That is,
g(z) = W(1—p+pz). 17)
Substituting (16) and (17) into (1), we get

W(l-p+pz) = f(z) 7-(1#2‘1@_%- W,(1-p+pz), or (18a)
W(z) = f (2=117D 2 ) Wila). (18b)
z P ar(l)(l_L%__EL) ?

We can now easily obtain the first and second moment of the residence time distribution

from equation (18b).
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3. Conclusion

In this note, we considered a discrete time B/G/1 queueing system with vacations, where
the server closes the gate when it begins a vacation. We obtained the distribution of the
number of customers at a random point in time, and in turn, the distribution of the residence
time for a customer. It is noted that solutions for our discrete time B/G/1 gated vacation
model are analogous to those for the continuous time M /G/1 gated vacation model. That is,
the term (1—1s) in the continuous case is replaced by (1—p-+pz) in the discrete case. It is
also noted that two different gate-closing policies(where the gate closes when the server ends

a vacation vs. when it begims a vacation) make no difference in performance measures.

< Appendix> (Derivation of equation (15))

f(z) = ¥ P(N=j}Z = ¥ ¥ P(N=k} A{j: V-+B*}

1=0 j=0 k=0
= L L PN=K {3 % 5 () p-p) (B - bl |2
= :0 P{N=k} {mio ni:o l:: 7 i}: (m) pi(l_p)m—i(jr_ll )pi—i(l__p)n—(j—i)vmbl(‘k) }

(p2)'(1—p)™" iz“( ) )(pe) (1 —p) 0 Py, bl }

{ )
- :’ P{N=Kk} {nio go :0( ) (DZ) (1=p)* I i(?) (pz)l(l—p)n_lvmb-(xk) }
= L PN=1 T, va L (F) G'-p T b2 B (]) (ee)1-p) |
= 3 PN=k) {33_.0 vo A=ptpo)” J £, b9 (1-prtpor |

P{N=k} {(1—p+pz)}* @(1—p-+pz)
=f(ﬂ(1"p+pz))6(l—p+pz). -
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