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An Exponentialization Procedure for General FMS
Network of Queues with Limited Buffer
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Abstract

In this paper we develop an exponentialization procedure for the modelling of open FMS
networks with general processing time at each station and limited buffer size. By imposing a reason-
able assumption on the solution set, the nonlinear equation system for the exponentialization pro-
cedure is formulated as a variational inequality problem and the solution existence is examined. The
efficient algorithm for the nonlinear equation system is developed using linearized Jacobi approxi-

mation method.

1. Introduction

A TFlexible Manufacturing System (FMS) is an automated batch manufacturing system which
is designed to produce different part types with the efficiency of mass production systems and

the flexibility of job shops. The generic FMS consists of the following components[5]:

(1) A set of machines or work stations, which have some degree of flexibility, in particular
they do not require significant set-up time or change-over time between successive jobs.

(2) A material handling system (MHS) that is automated and flexible, i.e. it permits jobs to
move between any pair of machines so that any job routing can be followed.

(3) A network of supervisory computers and microprocessors, which i) directs the routing of
jobs, ii) tracks the status of all jobs in the system, iii) passes the instruction for the
processing of each operation to each station, iv) provides essential monitoring of the cor-

rect performance of operation and signals problems requiring attention.
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(4) Storage, locally at the work stations, and/or centrally at the system level.

(5) The jobs to be processed by the system.

For the evaluation and control of performance, FMSs have been approximately modelled as
open networks of queues or closed networks of queues. In the open network model, the number of
parts within the system is a random variable; parts have to arrive to the system (from an up-
stream production stage for instance). In the closed network model, the number of part within
the system is a fixed constant, N, which usually represents the total number of pallets available
in the system. During the production process, all N pallets are occupied; as soon as one part
completes all its processing requirements and leaves the system, another is immediately relased
in the system. One could find an unrealistic assumption that parts to be processed are always
available whenever a pallet becomes available. In both of open network and closed network, we

usually assume two strong assumptions as follows:

(1) At all stations with first-come-first-served (FCFS) queue discipline, the processing time
distributions are exponential, and all parts types must have the same service rate par-
ameter at a station.

(2) All stations have a local buffer with unlimited capacity, i.e., it can accommodate all parts
circulating in the system if so necessary. In other words, parts will never be blocked at

any station.

With these two restrictive assumptions, the medel can be easily analyzed by the well-known
“product form” equilibrium joint queue length distribution. See[9] for closed queueing network
and{12] for open queueing network. But it is also known that the model will not in general yield
satisfactory performance evaluations if, with the FCFS queue discipline, the service time
distributions are non-exponential{15, 17].

In this paper we develop an exponentialization procedure for the modelling of open FMS
networks with general processing time at each station and limited buffer size. The resulting
exponential networks” can be easily analyzed by the results of previous research[1, 18].

Recently, Yao and Buzacott[19] formulated the exponentialization problem of closed FMS
networks as a fixed point problem and developed an iterative solution scheme which does not
guarantee the convergence of solution. We will propose a rigorous treatment of the solution pro-

cedure based on the finite-dimensional variational inequality problem in the context of general

1) Hereafter, we shall refer to an FMS network with general processing times as a general network, and refer
to one with exponential processing times as an exponential network,
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open FMS networks with limited buffer which is more realistic in practice.

This paper is organized as follows: A short review of the related works is given in chapter 2.
The next two chapters include the description of system configuration and the concept of
exponentialization. The nonlinear equation system for exponentialization procedure and its sol-
ution algorithm with a proof of solution existence are given in chapter 5 and 6. In chapter 7, a

simple example is used to demonstrate the algorithm.

2. Short Review of the Literature

The research on the network of queues has focused primarily on performance evaluation. We
adopt a classification of research by Bitran and Tirupati[2] for the brief review of the litera-

ture.
2.1 Exact Analysis

Exact results exist for Markovian systems. A seminal contribution in this area is the paper by
Jackson[12] which provides result for equilibrium probability distributions of the number of jobs
for a variety of open network system that are referred to as Jacksonian networks. With two
major assumption mentioned above this restricted class of network can be described in the fol-

lowing framework.

(1) The arrival process is Poisson with parameter i(K) where K is the total number of jobs
in the system.

(2) Job route is modeled as a Morkov process.

The main result is that the equilibrium distribution, if it exists, is of a prouduct form - prod-
uct of marginal distribution of each station.

The classical model of closed network was done by Gordon and Newell[9]. Eventhough the
normalizing constant in the equilibrium distribution requires the combinatorial computation?,

the closed network also has a product form solution. While the product form results are

2) The major difficulty in computing joint distribution is obtaining the value of normalizing constant. The num-
ber of different states is the number of ways M jobs can be placed in N work stations. For example, M=100,
N=10, there are roughly 4.25*10E12 states of the network. Fortunately, we have an efficient computational
techpique by Buzen{3].
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interesting and useful, they are difficult to implement in practice due to the very large state
space. Also, in many cases, the parameters of interest are the mean values of queue lengths,
waiting times etc. and not equilibrium distribution. Resier and Lavenberg[16] considered closed
network for which the product form results hold. For such network, they developed a procedure
(mean value analysis) to compute mean values without evaluating the equilibrium distribution.
However, the above assumptions are overly restrictive in many practical situations. Since the
exact results do not extend to more general network, it has led to the development of approxi-

mation scheme.
2.2 Approximation Analysis

The lack of success in obtaining exact solutions for general networks has motivated researchers
to develop approximations to evaluate performance measures. This may be brpadly described

under the following five categories.

(1) Diffusion approximation
(2) Mean value analysis
(3) Operational analysis
(4) Decomposition analysis

(5) Exponentialization approach

Diffusion approximations are motivated by heavy traffic limit theorem and are based on the
asymptotic method for approximating point processes. The work by Harrison and Reiman[11] is
representative of this type of analysis. Mean value analysis is a heuristic approach similar to
the work by Reiser and Laveberg[16] and is intended for closed networks. Buzen[3] was émong
the first to use operational analysis for computer systems. This paper focused on directly
measurable quantities and testable assumpions. The analysis is distribution free and relies on
flow balance and homogeneous service principles. Decomposition analysis is essentially an at-
tempt to generalize the notion of independence and product form results for Jackson type

networks to more general systems. Essentially the method involves three steps:

Step 1) Analysis of interaction between stations
Step 2) Decomposition of the network into subsystems of individual stations
and their analysis

Step 3) Recomposition of the results to obtain the network performance
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Works by Sauer and Chandy[17], Buzacott and Shanthikumar[4] and Bitran and Tirupati[2]
are included in this category.

The exponentialization approach can be traced to numerous earlier works including Chandy et
al.[6,7], Marie[15], Sauer and Chandy[17]. The idea of the approach is to tranform the network
into an (approximately) equivalent exponential network. Similar approach was done by Buzacott
and Shanthikumar[4]. The outline of their research is as follows: For K=1,2,..,C, the system is
first modelled as a closed queueing network with K jobs, and the throughput of station i, TH:
(K), is determined. The open network is then solved by representing the FMS as a single-server
queue with state dependent service rate equals to T Hi(K).

Buzacott and Yao[5] analyzed the simplified open FMS network model by equating the
blocking probabilities. Because they did not specify the queues in the central storage, a very re-
strictive and unrealistic modeling assumption that blocked jobs will again follow the same set of
predetermined routing probabilities without considering where they were blocked was imposed.

Yao and Buzacott[19] dealt with the exponentialization of closed queueing network with gen-

eral processing time.

3. Description of the General FMS Network

The FMS network to be considered can be described as follows:

1) It consists of a set of N work stations. Each station ¢ has a single server with a general
service time distribution, which is characterized by its mean, v, and variance, ¢/

2) Total number of jobs at central storage ié limited to C. Jobs may be blocked on arrival to
a work station which is already occupied by an other job, and blocked jobs will be
recirculated (“blocked and recirculated”). In other words, they will be back to the central
storage which has a separate queue for work station, join the associated queue, and get pre-
pared for retrial.

3) A job leaving station #(/=12,.,N) will either be fed back to the central storage and join
the associated queue with porbability 7; or leave the system with probability 7,.,, Both
the feedback and the exit transits are handled by the conveyor in a negligible time.

4) External jobs arrive at the system following a Poisson stream with rate 6. They join the
associated queues in the central storage with rate 0:(=ruf)), where 74 is the probability

that an arriving job visits station 7 first. Whenever the total number of jobs at the central



208 Hochang Lee BESENEeH

storage reaches C, external arrivals are turned away and lost. That is,

6K)=6, 6(K)=rs  if K<C
6(K)=0, 6{K)=0 if K=C

Figure 1 shows the open FMS network with general service time and limited central storage ca-

pacity.
Figure 1. General FMS Network (N =4)
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4. Concept of Exponentialization Procedure

The exponentialization approach to approximation used in this paper is to develop a solution
technique consisting of the appropriate combination of a solvable queueing network model and an
exact or approximate solution algorithm which relates the original system to the solvable
queueing network model. The exponentialization procedure is based on the following definition of

equivalent queueing networks.

Definition 1 Two queueing networks with an identical network structure are said to be equivalent
in performance measute Q if every two corresponding nodes (stations) in each network have

same value in performance measure Q.

It can be easily seen that the equivalence in queue length probability is the strongest one.
That is, two equivalent queueing networks in performance measure “queue length probability”

yield the same expected queue length and throughput. But the reverse is not true.
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The exponentialization procedure is to obtain an exponential network that is equivalent to
the given general network. In other words, it is to obtain a set of equivalent (approximate)
exponential service rates, u={w, i=12,..,N}, of the exponential network by analyzing general net-
work through decomposition”. Specifically, an important performance measure such as queue
length probability, expected queue length and throughput etc. is obtained for every two corre-
sponding nodes in each network (the isolated node is analyzed for the given general network),
and then by equating one to another for each station 7, we get a set of N nonlinear equations of
N unknown variables i, =12,..N. Then we get a system of nonlinear equations. In this paper

we use an expected queue length as a performance measure.
5. Exponentialization and Nonlinear Equation System

The idea of the exponentialization is to approximately transform the general network into an
exponential network. Specifically we want to find a set of “equivalent service rates” u that

satisfies following system of nonlinear equations.
L) =LfOp) Vi=12..,N Q)

where Lf(u) : expected queue length of station i in the exponential network which is chara
cterized by the service rate vector p.
L#(A(p)) : expected queue length of isolated station 7 in the general service time, (y;, ¢7), and
Poisson arrival with rate A(u).
4(p) : Poisson arival rate at isolated station i under the condition that the complement

of station ¢ forms exponential network which is characterized by pu.

5.1 Expected Queue Length of the Exponential Network, L/

Let o; be the net exponential arrival rate at station 7 of the exponential network. Then o; can

be calculated as follows:
Fact 1 [8] The following equation system

(K) =0+L, oK) 7, Wi=1, 2N (2)

3) Each queue in the general network is analyzed separately interfaced with the exponential network.



210 Hochang Lee BRREN S

has a unique solution w(K)=({K), aiAK),an(K)) with o{K)>0 ‘v’i=1,2,---JV. In vector no-
tation, a(X)=0(K)+«(K)I has a solution a(K)=60(K)I-T)"'.

Hereafter we use a; for a{K). Let n;, ¥i=12,---,N denotes the number of customer at station 7,
N
and K =Zln,- denotes the total number of customers in the central storage. From the balance

equation, we obtain the equilibrium state probability vector n of exponential network as follows:

Fact 2 [1] For an open queueing network with exponential service time and limited storage ca-

pacity C, the joint equilibrium state probability is given by
N
n(n, /,L)= A(C)‘l HK il;ll(a;/ng)"‘ (3)

where #n=(m, #..,4y) is a state vector of the network and A(C) is chosen so that the

probabilities with K=1,2,...,C sum to 1.

Let P(K) denote the probability of finding K jobs in the system. Then P(K) is obtained by

summing n(#n, u) over »; with ﬁlnﬁK. We get,
P(K)=0"q(K)/AC), VK =0,1,-+,C (4)
where q(K)=§ ﬁ(a;/u.-) ™
S={(n, nz,---,nN)lﬁlnﬁK, w20 Vi=12,- N}
Since f:o P(K)=1, we get the normalizing constant
AQ=3 oratm) 2 1= % PK)= % 64(K)AC) (5)

The simple recursive technique used by Buzen[3] can be applied to calculate the normalizing
constant A(C). It is simple to get the marginal distribtion, 7:(s;, u) from the joint distribution,
n(n, u). Define

N

S’ ={(7’li,"',ni—1,ni+1,"',7lN)| . Z_ .
F=1.#i

m=K, O<K<C—n,~, n,?O V]}

Summing n(#, u) over all states except the station i, we get

o, W =3 nln, 1)
—AQ™ 0" Gl™T  TT 0™l (6)

Letting g{K)= }; k=ﬁlt¢i 0™(oe/p)™ and ALK)=6%¢q(K), then
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ni(nia Il):g"i (ai/ﬂi)ni A(C_n,)/A(C) Vni=0v1’2""9c (7)
Now L:{(u) is calculated as follows:
LW =1+, knlk, 0

1+ 5 k6 lu¥ ALC—BIAC)

C

=1+6° 3. klo/u) adC—k)/AC)

k=1

—1+6° 5 ka/u) alC-PIS, ¢ od)
—146° 5 kG0t @C—Bial) Vi=12,N (8)

5.2 Expcted Queue Length of the General Network, L’

Since the complement of station 7 forms an exponential network, the arrival process at the
isolated staion ¢ is Poisson, The throughput of station j, TH; is defined as the number of service

completion in a unit time. Then,

M= 5 nTHARIE= T 7y y+0K) (9)

Now the isolated station # can be considered as an M/G/1 queue with arrival rate A(y) and

mean service time v. From the Pollaczek-Khintchine formula[14], we get
L:GAw) =pitpif (a* v+ 1)(2(1 —p)) Vi=1,2,N (10)
where pi=X(u)v.. From (8) and (10) we now have a nonlinear equation system as follows:

Idie(ﬂ)=LiK()~i(ﬂ)), Vi=1,2,'",N (11)
6. Existence of Solution and Algorithm

Consider the following nonlinear equation system:

F(u)=L*Q()— L@ =0, pe X (12)
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where
FG)={F(w, i=1,2,--,N}
L Q@) ={LfFGW), i=1,2,--,N}
L) ={Lp), i=1,2,--,N}

Since y; is a service rate of station 7, it is natural to assume that the rate is in closed and
bounded subset of RY excluding O (it is convenient to confine the feasible set to the compact
subset of RY because the service rate can be neither 0 nor infinite). In fact, X is polyhedral in
RY in practice.

Letting the solution space X be the compact and convex subset of R?Y, then we can define a

variational inequality problem, VI(X, F) as follows[13]:
F)'y—p"=0, VyeX (13)

where p*€X and F:X—R" Since F(y) is continuous mapping from X into R" and X is a
nonempty, compact and convex subset of RY , there exists a solution to the problem (13)[10].

From the following theorem we can characterize the solution to the nonlinear equation system
(12).

Fact 3 [13] Let u* be a solution to (13) and suppose that u*<int(X), the interior of X. Then it

is a solution of (12).

To solve the VI(X, F), we use the linearized Jacobi, one of symmetric linear approximation
methods. The motivation behind it is that each subproblem can be cast as an optimization prob-
lem with a separable quadratic objective function, which is easily solved by robust optimization
software such as MINOS and GAMS etc.

Stronger properties on the mapping F for convergence” and low convergence rate are major
problems in this linear approximation method. Now we describe the outline of solution algorithm

to solve (12) using linearized Jacobi as follows:

Step 1) By choosing an arbitrary large number as an upper bound of service rate, the compact
and convex solution X is constructed.
Step 2) Generate a sequence {y*}<X such that each y**’ solve problem VI(X, F¥):

4) For the convergence of linearized Jacobi method, we need a condition in Theorem 4.2 (b)[10]. A stronger
condition so called “diagonally dominant” is in proposition 4.3[10]. We know that the more diagonally domi-
nant V F(y*) is, the better the method can be expected to perform.
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FH)(y - 20, VyeX (14)

where F¥(u)=F()+D(u)(p—p*) and D(y") is the diagonal part of V F{(u"). Actually,
the subproblem VI(X,F*) can be solved by the follwing NLP:

Min sex [FGO =DYWY 3 + 5 i DGy (15)

Step 3) If max(uf*’ —puf)<e, then go to Step 4).
otherwise, go to Step 2).
Step 4) If p*! is in interior of X, then it is a solution to (12). Otherwise we conclude that (12)

does not have a solution.
7. Example

We solve a simple example to show the exponentializtion procedure and its solution algorithm.

Consider the following general FMS network.

Figure 2. Example
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Example) N =2, C=1
1, 68)=(,, 6)=(05, 0.25)
©=(0,, 6,)=(038, 0.9)
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Ya ¥z = 02 0

Then o= (a, o) =0T —-T)"'=(1, 1)
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«0)=1, q(1)=(i+—1—)

He
2:(0)=1, ¢:,(1)= (-—)
q:(0)=1, qz(l)=(’_‘)
M
From (8),
LiGw= 1+9(—) (7—)—"’(0)) 1+
ll1+ll2
Li=1+0() CACHR . (16)
a(1l) PR
From (10),
() =0.21,+0.8
2.2([1) =0.1[11+O.9
p=0.1p,1+0.4
p:=0.05u4,10.45
4+
LiG(w) ==
9+
Lt () = (17)
iy '
From (16) and (17), we get the following nonlinear equation system.
Fl(,;)_‘hL"2 -1——% 9
—llz Ill+ll2
g+ﬂ1 [.ll
Fy(p)= -1- =0 : 18
2([1) 11—ﬂ1 #1+I-t2 ( )
V F(u)= 1 10 _ 2
(ﬂ1+#2)2 ’ (6_#2)2 (#1+#z)2
20 _ M2 M
(11“#1)2 (ﬂ1+#2)2 ’ (ﬂ1+#2)2 (19)

Choosing arbitrary large numbers, say 10E+10’s, as upper bounds of u=(u, ), we can define a

compact and bounded solution space,

X ={ulwe[0,J0E+10] Vi=1,2} (20)

Then the NLP in Step 2) is as follows:
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, 4+ps us ptous
M —F -1 - ,
S S S N
j201
Ottt utad [0
- pf pitps  (uf+pd)’ I
M 0
(Wi +ut)* "
%(ﬂl; ﬂZ) [ ]
i &
0 (21)
G +ph)?

Using MINOS 5.0 and MATMOD routine with initial point p’=(u}, 43)=(2,2), we get an
equivalent exponential network characterized by solution p*={u*, u*)=(3.517) which is in in-
terior of X. The expected queue lengths of station 1 and 2 in the central buffer are 0.33 and 0.67
respectively. And the expected throughput of the system is 4.51 (=3.5%0.9-+1.7+0.8).

8. Conclusion

We developed a framework of exponentalization procedure for the general network with limited
central buffer. The concept of equivalent network is crucial in this procedure because users may
be interested in different performance measures. Another important thing is to probe the exist-
ence of equivalent (especially exponenttal) network.

By imposing a reasonable assumption on the solution set, the nonlinear equation system for
the exponentialization procedure was formulated as a variational inequality problem VI(X,F) and
the solution existence was examined.

The efficient algorithm for the nonlinear equation system was developed using linearized Jacobi
approximation method. Furthermore, each subproblem could be cast as an optimization problem
with a separable quadratic objective function, which is easily solved by MINOS 5.0 using
MATMOD. Newton’s method, one of the most powerful approximation methods, which needs
weaker conditions for convergence can be applicable to guarantee higher rate of convergence.

The computations of large scale problems are needed for the evaluation of the exponentia-

lization procedure and its algorithm.
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