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A New Mathematical Formulation For
The Classical Assembly Line Balancing Problem

Dooyoung Shin* and Daeyong Lee*™

Abstract

This paper presents a new integer formulation (Tpe Il ALB) for a single model assembly line bal-
ancing problem. The objective of the formulation is to minimize the total idle time, which is defined
as the product of the number of work stations and ke cycle time minus the total work content. This
formulation considers currently existing Type | (minimizing the number of work stations for a given
cvele time) and type | (minimizing the cycle time for a given number of work stations)
formulations as its special cases and provides the gibal minimum solutions of the cycle time and the
number of work stations. This information would be of great value to line designers involved in de-
signing new assembiy lines and rebalancing old lines inder flexible conditions. Solution methods based

on combination of Type 1 and Type 1l approaches are also suggested and compared.

1. Introduction

The main objective of a classical single mode! assembly line balancing (ALR, hereafter) is to
minimize the idle time by finding an optimal rix of a cvcle time and the number of work
stations alone the line. Even though this objecti-e has been well understood and widely accepted
(see Kilbridge and Wester | 11). it has never appeared in the form of the objective function in
integer formulations. Instead, the idle time was minimized, either by minimizing cyele time by
fixing the number of work stations (Type I ALE) (see Bavbars {29). Although in the ALB lit-
crature onlv Type | and Tvpe Il problems have been considered, these formulations do not pro-
vide the minimum idie time over the feasible ranges of cycle time and the number of work

stations.
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When a new assembly line is designed or when a current assembly line is rebalanced, an opti-
mal mix of the number of work stations and the cycle time is found so as to minimize line in-
stallation costs or to maximize production rate. Especially, the adoption of Just —in—time (JIT)
production system often necessitates the more fiequent line —rebalancing (usually once a month)
that requires manufacturing firms to quickly accomodate unpredictable changes in production
rates (cycle times), number of work stations (assembly workers), line layouts, and so on. The
traditional Type I and Type [I ALB approaches, however, do not address these changes properly
because it fails to recognize the dynamic and flexible nature of JIT. Since the main objective of
the ALB problem is to minimize the idle time, 't may be more desirable to consider both the
cycle time and the number of work stations as cecision bariables in 0—1 formulations where the
objective is to minimize the idle time.

While a few authors have considered cycle tine and the number of work stations as variables,
the objective of minimizing the idle time directly has not been considered. Rosenblatt and
Carlson [3] have proposed a profit maximizaticrn ALB model with a solution procedure which
maximizes the profit but not the efficiency of an assembly line. Deckro 47 has suggested a
minimization model in which a weighted objective (typically, cost function) is minimized. As is
indicated by Rosenblatt and Carson, however, profit maximization or cost minimization does not
necessarily minimize the idle time which is a p-imary measure of the efficiency of an assembly
line.

In this paper. an attempt will be made to formulate ALB problems using an integer program-
ming formulation, so that the optimal mix of tae number of work stations and the cycle time
can be obtained. The initial form of the formulstion would be nonlinear. Later in the Appendix,
however, we will discuss how we can convert th: nonlinear formulation inte a linear integer for-
mulation. The nonlinear formulation considers Type I and Tvpe [ ALB problems as its special
cases. The purpose of the objective function is to minimize the total idle time along the as-
sembly line by minimizing the product of the ramber of work stations and the cycle time, We
shall refer to this problem as Type Il ALB problem. Later in the paper, solution mcthods for
solving. Type 1l problems which are based «n currently existing Type I and | solution

approaches will be suggested.

2. Preliminaries

We note that the following are assumed to Je true for our ALB problems throughout the
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paper. Furthermore, we also note that our discussina is confined to single—model ALB problems.

S
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. Demand is known with certainty.

. The basic manufacturing method is unalteradle.

. Each task is considerd indivisible.

. No uncertain machine breakdowns, equipmernt failures and worker allowances are assumed.

. All work stations under consideration are icentical.

To faciiitate the expos.tion, we employ the felowing notational conventions throughout the

paper.

ol

Ke)

: cycle time

. a known upper bound on cycle time (¢ is determined on the basis of a target pro-
duction rate)

. a known lower bound on cycle time ic is determined on the basis of a target pro-
duction rate)

. a predetermined production rate

: number of tasks to be assigned

: processing time of i—th task

tow - Maxity hi=1,+ , N

m

: the smallest integer greater than or equal to x
| : number of elements in y
> number of work station

- a (known) lower bound on the number of work stations required

N
m = [¥Y t, / ¢]”if ¢ is unknown.

= a (known) upper bound on the number of work stations.

In general, m can be found by using a heuristic method or by using a trial directive.
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: H{a,b) | task b immediately follows task a}
: the set of tasks which must precede tusk i
. the set of tasks which must succeed task i
. the set of tasks with no succeeding taszks.

: the earliest work station to which task i can be assigned.

LifPi=10}

(. + ZP t, ) /¢ |7, otherwise
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L; : the latest work station to which task i can be assigned.

E; = -
m +1 — [trl-;is t,) /¢ ]*, otherwise
(S

< 1, if task i is assigned to station j.

! 0, otherwise
Y 1, if station j is needed

‘ 0, otherwise
T; : subset of all tasks that can be assigned to station j,

j = 1,---,m, without violating precedence relations.

W, : subset of all work stations that can accept task i,

i=1-N (ile,Wi={lieT)

T; and Wi can be determined on the basis of the notion of ‘early’ and ‘late’ work stations for

each task (i. e. , Ei and Li) introduced by patterson and Albracht [5]. Although the compu-
tation of ‘early’ and ‘late’ stations requires a krown value of ¢, a known upper bound ¢ can be

used to reduce the number of variables.

3. Type I ALB Formulation

we first propose the following integer nonlinear formulation of the ALB problem as Type I

ALB problem. This formulation considers Type I and Type [I ALB problems as its special cases.

Problem (P —0)

m N
Min (L v) - Lt (D
(c,xy) " .
s.t. Yox = 1, i=1l.-N (2)
JEW
Sotx; < j=Llr-m (3)
1€ Tj
Yoixg £ ¥ kxy, (a,n)eG (4)
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Sox < | T 1, ji=lL-,m

= B (5)
> ox < I v j=m+lm+2,:.m

ieTj

Yj+1 S ij j:m+1,lll+2,"',m_l (6)
c<c<c (7
X;; = 0 or 1, (8)
vi = 0 or L. (9)

The purpose of objective function (1) is to minimize the total idle time, which is equivalent to
the difference between the product of the cycle time and the number of work stations and the
sum of total processing times which is a constant. Constraint (2] implies that every task should
be assigned. Constraint (3) means that the total processing time of all tasks assigned to a
station must not exceed the cycle time. Constraint (4) stands for the precedence constraints.
Constraint (5) ensures that, if j—th station is nor considered (i. e. , y, = 0), then tasks cannot
be assigned to that station (i. e. , x;=0 for all i € T;). Constraint (6! implies that, if y;=0,
then y;+;=0 (i. e. , a work station cannot be considered unless a preceding work station is used).
Constraint (7) provides a feasible range of cycle t'me, which is based on a practical range of the
desired production rate.

Even though Type I ALB formulation results in an optimal mix of the number of work
stations and the cycle time, and minimizes the total idle time, it has not been considered in the
literature. The reason for this may be the following: (i) the complexity of the integer nonlinear
formulation and the lack of efficient algorithms for solving integer nonlinear programming: and
(ii) high computer time costs when such algorithms are applied. In general, the type to be
chosen may depend on the problem situation. As noted earlier, if the capacity of number of
stations is rather inflexible because of fixed size of machines of fixed layout, optimizing means
finding the minimum cycle time, given the existing work stations (Type Il problem).

If, however, the output of the production line, and consequently, its cycle time, are to be held
constant, then the minimum number of stations should be determined (Type I problem). If a
new assembly line is designed under flexible conditions, or if frequent rebalancing is necessary as
it is under Just —in—time production system, optimal combination of cycle time and the number
of work stations may be desired. If multiple products are produced in a batch mode in a flexible
assembly system where setup times are low, the Type Il approach can be applied. In practice,
however, all these problems may be subject to :nother set of constraints (e. g. , budget, floor
space, production planning, etc. ).

Problem (P—0) can also be formulated and solved as a linear 0—1 integer programming prob-



222

*

ik

il

T f

Doovoung Shin and Daevorg Lee i A

lem (see Appendix). Since the size of the probler becomes prohibitively large when the number

of tasks increases, however, it may not be pracucally desirable to solve a large scale Type [l

ALB problem (P—0) directly. As an alternative, by solving Type I and Type [ approaches in

combination, much computation time can be savid. The following two methods describe such an

approach.

We consider the following methods for finding the optimal mix of ¢ and m by solvng 0—1 in-

teger programming problems. Method A utilizes both Type I and Ul approaches. It starts with

Type I problem to obtain an optimal number ol work stations with a fixed value of the cycle

time. The Type I problem is then used repeatcdly until a global optimal mix of ¢* and m* is

found.

Method B is a variant of Method A. It obtains a local optimal mix of ¢ and m.

3.1 Method A

Step

Step

Step

Step

Step

L. (Application of Type I) with ¢'= ¢, so.ve a revised (P—0) (i. e., (p—1) below) to ob-
tain m’and the value of ¢’m’, where m is an initial optimal solution of Type I prob-
lem.

2. (Application of Type ) Set k = 1.

3. Set m' = m"

If m* { m, then go to step 5. otherwise go Lo step 4.

4. By solving a revised (P—0) (i. e, (;3—2) below), obtain ¢ and the value of ¢ m"

Then set k = k+1 and go to Step 3.

5. Find ¢* and m* such that
c*m* = Mlin ic"m*), where g=(m"— m).
=1,

Problem (P—1)

Min ¥ Y,

1=1

s.t. constraints (2), (3), (4), (5), (6), (8) and (9).

Problem (P—2)

Min ¢

st. Y otx; < ¢ j=1,--,m" (10}
€Ty
ZT Xy < 1Ty, j=1,m" (11)
iETy

and constraints (2), (4), (7) and (3).
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In Method A, (m ~ m) Type Il problems and one Type I problem should be solved with a
moderate amount of revision and reformulation tiine. In Step 1, ¢ is replaced with a constant, ¢
(or t.., if ¢ is not available), which is the lower bound of the feasible range of c, and (P-1) is
solved. With a known m' obtained in Step 3, corresponding Yj's will be determined and (P—0)
will be revised as (P—2). (P—2) is then solved iepeatedly with different values of m" until m*
reaches its lowest limit. Using the value of ¢ in Step 4, obtain the optimal solution of (P—1) as
the revised value of m* and compute the revised value of ¢'m". This modification is expected to
reduce the total number of (P—1) and (P—2) prcblems that need to be solved. Since, in general,
the range of m is smaller than that of ¢, fewer integer LP problems will be solved.

In Method B, we compare the values of ¢'m* ard repeat while ¢'m* 2 ¢*"”m"", stopping when
¢mt < ¢"'m*"!. This results in a reduction in nwaber of iterations. However, it does not guaran-
tee an optimal mix of ¢ and m (see Table 2). Tte modification suggested earlier for the Step 4
of Method A, namely, using ¢*'' to obtain the optimal solution of (P—1) as the revised value of

rn"“, is also applicable in Step 3.
3. 2 Method B

Step 1. (Application of Type I) With ¢” = ¢, sclve (P—1) and obtain
m’.

Step 2. (Application of Type I} Set k=0 and It Z=c'm",
the current value of ¢ - m at iteration k

Step 3. Set m*'=m" — 1. If m""" < m, then go to Step 5.
Otherwise, solve the revised (P—2) witl a new m"'"' value, and
obtain ¢**' as an optimal solution and gn to step 4.

Step 4. Compare Z with ¢""'m*™. If ¢*"'m*"" < 7, then stop.
Otherwise, set Z=c¢""'m*"" and k=k + 1, and go to Step 3.

Step 5. Stop. ¢* and m" are the best mix of ¢ ard m.

4. Computational Results

In order to compare these two methods, we 1ave solved small test problems (Mertens (6],

Bowman [7, Jackson [8! and Sawyer {91).

First, (P—1) is formulated based on the feasible ranges of ¢ and m. The best possible
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formulations (i. e., minimum possible number of variables and constraints) were attained by
using the methods available in the ALB literature. The problems were then sloved using a com-
puter program written in FORTRAN that has a solution method for solving a zero—one linear
program as a subroutine. The elapsed CPU times on a Prime minicomputer and on the Cray
Supercomputer X —MP system are obtained. Even though our computer run does not utilize a
feasible solution as a starting point, such methods of arbitration could be used to save compu-
tation time. Efficient algorithms for Type I anl Type [ ALB problems which are available in
the ALB literature can also be utilized to save computation time. The following tables

summarize the comparison between two methods.

{Table 1) Elapsed CPU Time (in seconds)

Method A Method B
Problem
Cray Prime Cray Prime
Mertens (7 task) 2.39 85.96 2.67 79.39
Bowman (8 task) 3.01 71.05 1.36 29.02
Jackson (11 task) 5.60 128.62 3.88 121.23
Sawyer (30 task) 19.45 334.27 16.59 773.61
{Table 2> Cptimal Values
Method A Method B Rato(A/B)
Problem
c m cm c m cm
Mertens (7 task) 29 1 29 7 5 35 0.82
Bowman (8 task) 27 3 31 18 5 90 0.90
Jackson (11 task) 12 4 18 7 8 56 (.86
Sawyer (30 task) 41 3 528 35 10 350 0.94
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Note : The following arbitrary feasible ranges of > and m were used in the computation.

Problem c m

7 task 6 <c < 30 l<m< 7
3 task 16 <e < 32 l<m< 7
11 task 7<c¢ < 21 l<m< 9
30 task 34 < e < 102 l<m < 10

formulations (i. e., minimum possible number of variables and constraints) were attained by
using the methods available in the ALB literature. The problems were then sloved using a com-
puter program written in FORTRAN that has i solution method for solving a zero—one linear
program as a subroutine. The elapsed CPU tines on a Prime minicomputer and on the Cray
Supercomputer X —MP system are obtained. Even though our computer run does not utilize a
feasible solution as a starting point, such methods of arbitration could be used to save compu-
tation time. Efficient algorithmes for Type I and Type [ ALB problems which are available in
the ALB literature can also be utilized to save computation time. The following tables
summarize the comparison between two methods.

It can be easily observed that the computatirn time can be saved by using Method B, even
though the optimal solutions cannot be guaranteed. It can also be easily assumed that the num-
ber of iterations in Method A and Method B wouald increase when the ranges of ¢ and m become

wider. Extra work for revision and reformulation will also increase in such cases.

5. Conclusions

We have proposed integer programming forrlations and solution methods for the classical
single model assembly line balancing problem. The new approach not only generalizes the cur-
rently existing 0—1 formulations but also guarantees the minimum idle time with the optimal
mix of the cycle time and the number of work stations upon solving the problem. This new ap-
proach will provide a valuable input for line designers who are often faced with the problem of
optimizing line configuration parameters such as the maximization of production rates or the

minimization of line installation costs.
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Solving Type I ALB ({P—0)) directly requircs efficient solution algroithms because it may
be prohibitively time consuming for practical~siz:d problems. Either Method A or Method B is
suggested as a possible solution method. Fven t:ough the nature of Tvpe Il ALB problem is
somewhat complicated in terms of the size and the difficulty of the problem, however. such
factors as factory utilization, availability of hizh speed computer and powerful commercial
software packages, and expected savings from line installation costs should be emphasized as
favoring the use of Type I ALB approaches in sa e settings.

Future research could be centered on the inclusion of specific cost terms, budgetary
restrictions, availability of floor space, capacity coistraints as well as the idle time. Development
of efficient optimal —seeking algorithms and heuri: tics which capitalize on special characteristics

of Type l ALB problems are also desirable.

Appendix

Since the linear 0—1 methods are typically easier than the nonlinear approach, we introduce an
approach to transform our nonlinear objective fu:iction into a linear relation. Consider the fol-

lowing approach in which every t; is assumed to b an integer.

Type l ALB objective can be further simplified by introducing another variable

™
m Y Y,
el

thereby making the term in objective function:

c - m (A--1)

The sum of processing times

11

ti,

is no longer used because the term is a constaid. Taking the log of (c- m), we have the fol-

lowing objective:
Minimize {log ¢ + log m} {(A-2)

Note that we are minimizing the sum of concave functions which is also concave. By also

noting that a minimum of a concave function is :ttained al{ an extreme point of the feasible re-
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gion, we can use a grid linearization.
L
s

We choose two sets of grid points {¢!,--.c
The set of grid points for ¢ is feasible within it: range,

tyw < ¢ < ¢ (if € is not available, then ¢ = _ t).

The functions log ¢ and log m may be approxirnated on their sets of grid points by drawing

their piecewise linear functions.

The objective function (A-2) is then rewritten as
(A—3)

Minimize | min{l{¢c}} + min! Y,(m)}],
where L{c)= 2 + fc and Y.(m) = a, + bun are linear functions for log ¢ and log m, re-

spectively and i=1,-,g and k=1,---;m.
We first replace ¢ as the sum of binary variables,
(A—4)

C = to T L €
t.. and ¢, is binary. Note that each ci is defined in the specific unit interval

where k=c
within the feasible range of c. log ¢ can then be expressed as:

log c=1 + a + pic. + - + pa

with the following additional constraints, ¢, 2 ¢+, for i=1,--,k—1 and x=log t.. and fy=log

h — log(h—1), for h=tg, + 1, tw, + 2, -, ¢
(A—5)

Similarly, by using the relationship

m=m-+ ¥ Y,
. 1

we can rewrite log m as:

log m=a, + by, + by: + -+ + buya,
where a = log m, b. = log (h+1) — log h, for h = m, m+1-m~1
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Here we do not need any additional constraints Y, > Y, since we have already included them

in our original Type Il formulation. Our new lincar objective function will then become:

Minimize { (&; + iy + -+ + Bic) + (a + by, + - + bz i) | (A—6)
The Type Il problem (P—0) is formulated as the pure zero-—one programming problem:

Minimize (A—6)
s.t. (A—4), (A—5) and constraints (2) ~ (9)

Even though this approach guarantees global minimum solutions of ¢ and m, the additional bi-

nary variables and constraints may be too great if the range of the cycle time is too wide.
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