ANALYTIC TORSION FOR HOLOMORPHIC VECTOR BUNDLES

  • Kim, Hong-Jong (Department of Mathematics, Seoul National University, Seoul 151-742)
  • Published : 1994.07.01

Abstract

Let $E \to M$ be a hermitian holomorphic vector bundle over a compact (complex) hermitian manifold M of complex dimension n, and let $$ d"_p(E) : 0 \to A^{p,0}(E) \to A^{p,1}(E) \to \cdots \to A^{p,n}(E) \to 0$$ be the Dolbeault complex. Then $A^{p,q}(E)$ become a prehibert space so that the formal adjoint $\delta"$ of $d"$ and the "Laplacian" $\Delta" = \delta" d" + d" \delta"$ are defined.quot; d" + d" \delta"$ are defined.;$ are defined.

Keywords