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OPTIMAL BAYESIAN DESIGN FOR
DISCRIMINATION OF ACCELERATION MODELS
IN THE EXPONENTIAL DISTRIBUTION

CHOON-IL PARK

1. Introduction

The aim of the study is a powerful test for the discrimination and
therefore an optimal design for that purpose. This problem is studied
by Chernoff([5]) and used in Chernoff([6]) for accelerated life tests using
the exponential distribution for life times. The approach used here is
similar to that suggested by Lauter([10]) ard used in Chaloner((3])
and Chaloner and Larntz([4]) where it is motivated using Bayesian
arguments. The approach taken in this paper the loss function L(-)
evaluating a test procedure and a design d.

Throughout this paper, we assume O — fy, R;, loss, representing
the loss coming from a wrong decision. Two probabilities Py, P, =
1 — P, are assigned to the two models My and M;. Each design d
correspouds to a distribution in My and M, raspectively. The optimal
test procedure is the Bayes-test determining the model M, if

Py folz|d) > Py fi(xld], (1-1)

where fi(-|d) are the probability density function {pdf) with respect
to a measure p of the model &£ = 0 or 1 for fixed design d.

This choice criteria yields the Bayes-risk 7(d) that is the weighted
probability of an incorrect decision. That is,

T(d) = I(] . .P() . I)(){ c 44C|Al(),d) + ]\’U . f)l . .P{)( € fil]‘/f] . (1).

where the set A consists of all points fulfilling (1-1}. Now we denote a
design d* to be optimal. if it minimizes the Bayes risk.
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Since we suppose that pdf exist, the Bayes-risk for 0-1 loss reads
r(d) = P, — / max[0, Py fi(z|d) — Py fo(z|d Jdu(r).
R

To avoid trivial cases let the prior probabilities Py, P; be different from
0 or 1. In general the optimal design depends upon the prior belief P,,
P

2. Selection parameters

The pdf fo(-), fi(-) belong now to a parametrized class and at least
some of the parameters are functions of a controlled variable. The
Bayes-test should clarify which function describes the influence of the
controlled variable correctly.

First we deal with unknown parameters which arc independent of
the adjustable variable d and determine the pdf. Let 9, and 8; be the
nuisance parameters of the two models. Therefore we denote the pdf
fo(-|60,d) and f1{-|8;,d). The dimension of the paraineters 8, and 8,
need not be the same, thus the specification of two quite different prior
pdf is requested. We introduce an additional parameter & € {0,1}
indicating the 'true’ model. The combination of k and 6y is treated as
the model parameter r = (k, 8;) with prior density

P(7) = P(0k|k)Pk

For fixed (and hence omitted) d the observations X leac to the posterior
distribution of r which can be written as

P(r

X) = P(6,)X, k)P(k|X).

P(60¢|X, k) stands for the posterior density of ; ard the posterior
probability of the model k is

Pemg(X)

P(klX) = Pymo(X) + Prmy(X)

mk(X) is the marginal density of X in the state k. i.e

m(x) = /Rf(ka)PWk’k)dﬂ(Gk).
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Despite the fact that the decision (E, 5) cons:sts of both choosing the
state k and estimating the parameter 6, again an optimal selection of
the model lies in our interest only. Therefore the loss stays the 0, 1-loss

"1, ifk =k

0, otherwise.

L(k,e,%,é,d):{

N

The Bayes-test according to that 0, 1-loss accepts the hypothesis k = 0
if
Pomo(X) > Pymy (X

The likelihood ratio is replaced by the ratio of the marginal pdf. The
principle of the best test is the same as in the case where all parameters
are known.

Let us assume that our class of distributions constitutes an 1-dimen-
sional location family of continuous distributions. The two models
differ only through different acceleration models 6¢(d) and 6,(d) for
the location parameter §. The test should distinguish the suitable
acceleration models. Therefore we write

fr(x|d) = f(x = 6x(d)), k =0,1.

In general the optimal design which minimizes the Bayes-risk of the
discrimination test depends upon the prior and upon the pdf f(-), but
under special assumptions about f(-) we derive conditions which assure
the Bayes-risk to be independent of the concrete distribution and the
prior. Hence, we have the following theorem.

THEOREM 1. If the pdf f : R — R" is increasing on R, and
decreasing on Ry, then the design d* is optimal if and only if the
distance

161(d) — 6o(d)]
is maximum at d*.

Proof. The Bayes-risk

r(d) = P~ P /RIHRX[O, a- f(x = 60:1(d)) = f(x = bo(d)))dx, (2-1)
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where a = Py /P, is without any loss of generality less than 1. From
(2-1) it can be seen that r(-) is a function of 8; — 6, only,

rid) = P, — PyR(6, - 6y),

with

R(9) = / max[0,a - f(x —8) — f(x)]d.. (2-2)
JR

We assume that ¢,(d) > 8¢(d) for fixed d and 6 > 0 in (2-1) and (2-2),
respectively. otherwise we replace f(x) by f(—x). If suffices to show
that R(#) is not decreasing in 6.

If z < 0 then, max[0, a f(z —8)— f(x)] = 0 because »f the monotony
of f(:)on R . so

R(9) = / max([0, o f(r — 8) — f(z))d=.
Jo
Forat > 0 we get

R +t)= / max|0, af(r - 0) — f(z — ti] dz.

t

The monotony of f(-) for nonnegative reals gives
R(6 +t) < R(H)

and d cannot be optimal if the distance of the acceleration models is
not as large as possible. This completes the proof of theorem.

In many applications, a sufficient statistic can be obtained which be-
longs to a scale parameter family. Again we restrict to a 1-dimensional
pdf f(-). Since the parameter is now scale parameter we write

file [ d) = f(6k(d) f(Ok(d)x), (k=0,1) (2-3)

with positive functions 8y(-), 6:(-). In order to derive a criterion for
a design to be optimal. we define the two ‘parts’ fi(z) = f(z) and
fa(z) = f(z) both on RS. For each # and o we define the sets

Fy) = {2 > 0| abf,(62) > file)}, i=1.2,
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which are assumed to be intervals for our result. Therefore we espe-
cially consider Gamm adencities y(n,#). In this case f; = 0 and the
upper limit of the interval is $1(#) = (Ina +n1n8)/(§ — 1) with
1, ifa>1
¢ =
a~ o ifa< |

using the general notation of Theorem 2. we have the following theorem

THEOREM 2. If the pdf f(-) in (3-3) fulfills following conditions
(1)-3):
(1) f(-) is piecewise continuous;
(2) For any ¢ > 0, there exist ¢, with 1 < ¢ < oc such that

1<f<c=F) =¢ Fy)=R*
and if ¢ is finite then
c<f<oo= F;Z = [0, s,(6));

(3) si(8) is differentiable on (¢, 00);
and if (4) or (5) holds;
(4) s:(0) is the unique solution of a8f;(8x) = fi(z) > 0;
(5) si(0) is decreasing;
then a design that maximizes | In(6,(d)) — In(8y(d)) | is optimal.

Proof. The Bayes-risk is

0(d) [exd)

6,,(d)mJ —f(;r)] dr,

max [0 o

r(d):P1~—P0/ *Go(d)

R

and therefore a function of the quotient 8;(d /6¢(d) only. We assume
8, > 6, for fixed d and define

R8) = [ max(o,ab5(6) - J(2)] de,
R
for 6 > 1. Since R(6) = R1(0) = R(0) where

R,(6) = / vmax[(),aﬁf,l(é)‘) — fi(z))dz,
Jo
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the assertion is proved if R;(-), ¢ = 1,2 are both increasing in 6. If
¢ > 1 then only F;’a = R* and if ¢ < 1 then only F;,O‘ = 0 1s possible
for 1 < 8 < ¢ and in both cases the Bayes-risk takes its maximum
value. Without loss of generality, we assume that f;(-) are continuous
on the right. Then assumptions about f(-) and s;(6 imply that R,
has for ¢ < 8 a derivate on the right

Ri7(8) = afi(8si(8))si(0) + [a0fi(85:(6))0 — fils (6)))s1(6).

Since afi(0s:(0)) < fi(s:(0)) we have by virtue of the assumptions on
3:(6)
R*(8)>0,i=1,2

This completes the proof of theorem.

3. Conclusion

As a principal application of the previous section, we consider the
discrimination of acceleration models concerning life data coming form
an exponential distribution with failure rate 8. Instead of design we
call the (positive) controllable variable stress S under which the obser-
vations X,, (+ = 1,...,n) of life time are taken. Since for fixed stress
Y.r, X; is a sufficient statistic which belongs to a scale parameter
family with all the properties requested for application of Theorem 2.

It is independent of the prior pdf for the two models and the number
of observations. The optimal stress maximizes the symmetric quotient
Q(s) of the two completely specified acceleration models Qq(s) and
Q1(s) in the exponential models.
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