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THE ANNIHILATORS AND THE
HAHN-BANACH EXTENSION PROPERTY

SUNG HO PARK

1. Introduction

Let X be a normed linear space, M a subspace of X, and V a
subspace of the dual space X*. In (3], we studied the Hahn-Banach
extension property in V. Here we give the definition and a characteri-
zation of the Hahn-Banach extension property in V.

DEFINITION 1.1.[3]. Let M be a subspace of a normed linear space
X, and let V be a subspace of X*. We say that M has the Hahn-
Banach extension property in V if for each f € V' there exists fo € V
such that

(1) folz) = f(z) for each z € M, and

(2) [I£oll = il f1arll-

THEOREM 1.2.[3]. Let M be a subspace of a normed linear space
X, and let V be a subspace of the dual space X*. Then the following
are equivalent:

(a) M has the Hahn-Banach extension property in V.
(b) i) M+ is proximinal in V.
ii) for each f € V, d(f, M) = ||flm |-

In this paper, we want to study some topological properties of the
Hahn-Banach extension property in V, describe the spaces of contin-
uous linear functonals on a subspace which has the Hahn-Banach ex-
tension property in V and the quotient spaces by using the concept
of an annihilator, and find a relationship between the Hahn-Banach
extension property in 1" and the V-Hahn-Banach extension property.

In section 2, we give some basic properties of o( X, V).
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In section 3, we give the definitions of the annihilator M+ and the
property {Sep) in V and study some topological properties.

In section 4, we describe the space of continuous linear functionals
on the subspace and quotient spaces of normed linear spaces.

In section 5, we study the relation between the Hahni-Banach exten-
sion property in V' and the V-Hahn-Banach extension property.

2. Preliminary

Our goal in this section is to recall how one can introduce a topology
into a linear space X by means of families of linear functionals on X
and to examine some of the basic properties of such topologies.

To be more precise, suppose that X is a linear space over ® and let
V C X' be a family of linear functionals on X, where X' is the space
of all linear functionals on X. We wish to define a topology o(X, V) on
X such that (X,o(X,V)) is a locally convex topological linear space
for which a net {z,} C X converges to z € X in the topology o(X, V)
if and only if lim,z'(24) = 2'(z),2' € V and for which the functionals
in V are continuous linear functionals on (X,0(X,V)). Defining a
topology (X, V) on X that satisfies the last two reqiirement is not
difficult.

Indeed, recalling the discussion of topologies in seniinormed linear
spaces, we define a family P = {p,/|z' € V} of seminorms on X by
setting p,/(z) = |2'(zr)|,x € X and 2’ € V, if V separases points. It is
easy to see that each p,s is a seminorm. Then the tovology o(X,V)
generated by P, that is, the topology whose a neighborhood base at a
point z € X consists of sets of the form

U(I»5:P1'I,PJ:’2, nDI’") - {y NS *Xapz'k('r'—y) < Sﬁk =12, 7“’}7

where ¢ > 0,n € Z,n > 0, and the choice of z,z}, --,2) iIn V is
arbitrary, is such that {z,} converges to x in ¢(X,V) if and only if
limaz'(z4) = 2'(2),2' € V. Moreover, it is apparent that the elements
of V are continuous with respect to o{ X, V).

However, the pair (X,0(X,V)) may not be a semrinormed linear
space-equivalently, not a locally convex topological linear space,since
we have made no requirement that |z'(x)| = p,+(2) = 0,2’ ¢ V should
imply = = 0.
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Now we will summarize some basic well-known properties of a( X, V)
-topology on X.

THEOREM 2.1. Let X" be a linear space aud suppose that V ¢ X'
separates points. If P = {p,/|z' € V} where

parlr) = |z'(z)],

for any ¢ € X and 2’ € V', then P is a family of seminorms on X such
that (X, P) is a seminormed linear space. Moreover, if o(X,V') is the
topology on X determined by the family P, then

(1) (X,0(X,V)) is a locally convex topological linear space.
(ii) A net {z,} € X converges tox € X in o(X,V) if and only if
limya'(r,) = a'(z), forany z' € V.
(1) Ifz' € V. then x' is a continuous linear functional on (X, 0( X,
V).
(iv) o(X,V) is the weakest topology on X for which the elements
of V' are continuous.

THEOREM 2.2. Let X be a linear space and suppose V C X' sepa-
rates points. If V is countable, then the topology o(X, V') is metrizable.

PROPOSITION 2.3. Let X be a linear space and suppose that Vi C
X' separates points, k = 1, 2. If Vi C Vs, then o(X. V)) C o(X.Vy).

PROPOSITION 2.4. Let (X, 1) be a locally convex topological linear
space. If V. C X* separates points, then o(X,V) C 7.

We noted in Theorem 2.1 that each ' € 17 is a continuous linear
functional on (X, (X, V)). Actually V is precisely the set of continu-
ous linear functionals on (X, (X, V)), provided V is a linear space.

THEOREM 2.5. Let X be a linear space and suppose that V' C X'
is a subspace that separates points. Then the iollowing are equivalent:
(1) z* e V.
(ii) =* is a continuous linear functional on (X, o/ X, V)).

This result, combined with the Hahn-Banach theorem, immediately
yields the following corollary:
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COROLLARY 2.6. Let X be a linear space and suppose that V ¢ X'
is a subspace that separates points. If M C X is a linear subspace,
then the following are equivalent:

(i) M is a proper closed subspace of (X,o(X,V ).
(ii) Ifx, ¢ M, then there exists some v’ € V such that x'(z,) = 1
and z'(2) = 0. forany r € M

3. Annihilators

In this section, we want to study the slightly generaiized annihilators
and their basic properties.

DEFINITION 3.1. Let X be a normed linear spac: and let V' be a
subspace of X*. If M C X, then

My = {c* €V :e*ax)=0foranyr € M}
1s called the annihilator of M in V. ¥ W < X*, then

W, ={zxeX:2"(z)=0foranyz™ € ¥}
is called the anmihilator of W.

Thus M¥ C V is the set of all continuous linear functionals on X
in V' that vanish identically on M, and W, C X is the set of common
zeros of the continuous linear functionals on X that belong to W.

Now we can have some basic properties of annihilstors.

PROPOSITION 3.2. Let X be a normed linear space, M C X, W C
X*, and let V' be a closed subspace of X*.Then

(i) M+ is a closed subspace of V.

(1) W is a closed subspace of X .
(i) M C(M$) ..

PROPOSITION 3.3. Let M and N be subspaces of a normed linear
space X and let V be a subspace of the dual space X *. Then
1) (M + N =MENNG,
2) (MUN) C ME+ N C(MNN)E.
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Proof. 1) Suppose.r € (M+N){. Thenz* =V and z*(m+n) =0,
for any m € M and n € N, and so z (m) = r*(n) = 0. Hence
€ My n NL Therefore (]W +N)y C Mv + Ni-.

Conversely, if £* € M{ N N, then z* € V z*(m) = 2*(n) = 0 for
any m € M and n € N. By the linearity of z*,2%(m + n) 0 for
any m+n € M + N and so z* € (M + N)i. Ther(foro MENNE
(M +N)y.

2) Suppose that z* € (M UN)j;. Then «* ¢ V and z7(m) =0 for
any m € M UN. and so %(m) = 0 for any mn € M, 5-2:(71,) = 0 for
any n € N and z* = 52:« + 3,;— Hence t* € M{ + N¢. Suppose that
* € M + N'L‘ Then t* € V and * = y* + 2* for some y* € M
and :* € Ny soy*,z* € V, y*(m =0 for any m € M and z*(n) =0
for any n € N. Thus z*(m) = y*(m) + 2*(m) = 0 for any m € MNN.
Hence x* ¢ (M N N){'

DEFINITION 3.4. Let M be a subspace of a normed linear space
X and let V be a subspace of X*. If for each z ¢ M, there exists
z*(# 0) ¢ My such that z*(r) # 0, then we say that M has the

property (Sep) in V or V separates the points in X"\ M.

Next we give some simple examples which Lave or do not have the
property (Sep) n V.

EXAMPLES 3.5. 1) Every subspace of a norned linear space X has
the property (Sep) in X*.

2) Let M be a closed hyperplane of a norined linear space X. If
x ¢ M, then there exists ™ € M+ such that x*(z) # 0. Thus if we
put V = span{z*}, then M has the property (Sep) in V since for each
x ¢ M, x*(x)+# 0. In this case, ME=V.

3) Let M be a closed subspace of a normed linear space X with
X = M®|z,y] where {z,y} is a linearly independent set with 2,y ¢ M.
By Hahn-Banach Theorem, there exists x* € (M ¢ [y])* such that
z*(z) # 0 and r*(y) = 0. Since z*(z) # 0 and r*(y) = 0, M does not
have the property (Sep) in V if we put V = span{az*}.

THEOREM 3.6. Let M be a subspace of X, V a closed subspace of
X* and W a subspace of V. Then

(i) (M) is the norm-closure of M in X if M has the property
(Sep) in V.
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(1) (WL)$ is the weak*-closure of W in V if 1_/‘.7“)‘ has the prop-
erty (Sep) in (W )", where * : X — X** is the canonical
embedding.

Proof. (i)If 2 € M, then z*(z) = 0 for any =* € Misor € (M),
Thus M C (M) ;. Since (Mi}), is norm-closed, it contains the norm-
closure M of M, that is, M C (M#),. Butif z, € (M) L\ M, then,
by the property (Sep), there exists 2* € M such that x*(xo) # 0.
However, r, € (M), implies that £*(z,) = 0. This contradict the
choice of x*. Therefore M = (M) ;.

(i) fe* € WNV, then 2*(x) = 0 for any « € W then r*(z) = 0 for
any © € Wi soa™ € (Wo)f Thus WNV ¢ (Wo)E o Wy C (WL)d.
Suppose that 2* € (W )& \ W' Then z* € V and z* € (VVi’)\Ww .
Since W" has the property (Sep) in (W)L, ther» exists z € W,
such that r(x*) = z*(r) # 0. Since +* € (W, )*, a*(z) = 0. It is a

contracdiction. Thus (W) < Wy
COROLLARY 3.7. Let M be a subspace of a normad linear space X
and W a subspace of X*. Then

(i) (M*), is the norm-closure of M in X, and
(il) (W)t is the weak*-closure of W in X*.

Proof. Since every subspace of a normed linear space has the prop-
erty (Sep) in X*, these follow from Theorem 3.6.

Observe, as a corollary, that every norm-closed subspace of X is the
annihilator of its annihilator and the same is true of every weak*-closed
subspace of X*.

Now, from the basic property of a(X, V)-topology. we have the fol-

lowing results.

PROPOSITION 3.8. Let X be a Banach space and le: V be a subspace
of X* that separates points. Then the following are equivalent:
1) M is a proper closed subspace of (X,0(X.V)),
ii) M has the property (Sep) in V.

Proof. It follows from Corollary 2.6.
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PROPOSITION 3.9. Let M be a subspace of a normed linear space
X and let V be a subspace of X*. Suppose that M has the property
(Sep)in V. Let z, € X.

1) Suppose that M is closed. If 2* € V and z*(z) = 0 for any
r € M implies t*(z,) = 0, then z, € M.
2) Suppose that V separates points. The following are equivalent:
1) (M) = X
ii) If z* € V is such that z*(z) = 0 for any @ € M, then
=0

Proof. 1) Suppose not, i.e., 2o ¢ M. Since M has the property
(Sep) in V, there exists z* € My such that £*(z,) # 0. It contradicts
the hypothesis. Thus z, € M.

2) Suppose not, i.e., there exists z* € V with «*(z) = 0 for any
z € M such that z* # 0. Since z* # 0, there exists 2, € X \ M such
that z*(x,) 5 0. Since cl(M)7%Y) = X there exists a net {z,} in M
such that z,, — zo in o( X, V). Then z*(z,) = 0 and z*(x,) — «*(xo).
It contradcits the fact that #*(z,) # 0. Thus ii) holds.

Conversely, suppose not, i.e., cl(M)7X'V) % X. Then there exists
zo € X such that zo ¢ cl(M)*®Y). Since B ¢ cl(M)7X V),
o, ¢ M. By the property (Sep) in V. there exists r* € V such that
x*(m) = 0 for any m € M and z*(z.,) # 0. By ii), 2* = 0 but
z*(ro) # 0. It is a contradiction. Hence (M) V) = X,

4. Duals of subspaces and of quotient spaces

Let M be a subspace of a normed linear space X and let V be a
subspace of X*. Define

MC = {I*IM o V}

and
M ={z* €V :2*(z)=0forayy v € M}.

Now we shall use the concept of an annihila .or to describe the spaces
of continuous linear functionals on the subspiaces and quotient spaces
of normed linear spaces.
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THEOREM 4.1. Let M be a closed subspace of a Banach space X
and let V be a subspace of X*

(a) Suppose that M has the Hahn-Banach extension property in V.
Then the Hahn-Banach extension property in V extends each m* € M},
to a functional =* € V. Define

o(m*) =z + M{.

Then o is an isometric isomorphism of M}, onto V/M.

(b) Let V be closed and let # : X — X/M be the quotient map.
Put Y = X/M and Yy = {y* € Y*|y*r € V}. Then Y} is a closed
subspace of Y'*. For each y* € Y define

ry” = y'm.
Then 7 is an isometric isomorphism of Y} onto Mit.

Proof. (a) Let m* € M},. If z* and z* in V are extensions of m*,
then £* — 2% is in M. Hence 2* + M = 2* + M. Thus o is well-
defined. Let m}, mj € M. Since M has the Hahn-Banach extension
property in V, there exist z}, 23 € V such that z}|yy = m}, 23|y =
m3, [mill = llz3] and [m3] = ||o3]]. Thus, for any a. 3 € K.

o(am} + fm}) = ax} + Bl + My
= a(z] + My) + B(z; + M)
= ao(m]) + fo(m})
so o is linear. Since the restriction of every z* € V to M is a member of

My, the range of o is all of V/M#. Fix m* € M}, If 2* € V extends
m?®, it is clear that ||[m*|| < ||z*|| so

l2* + M|l = inf [jz* + 27|
T EMy
= inf I
it vl
y.,M»:m.

Hence
[l = lo(m™)]| < ||z
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By the Hahn-Banach extension property in V, there exists z* € V
such that z*|p = m* and ||z*| = ||m*||. Thus ||lo(m*)|| = ||m*||. This
completes (a).

(b) f 2 € X and y* € Y, then 7z € Y, and hence & —— y*7z 1s
a continuous linear functional on X which is in V and which vanishes
for each £ € M. Thus ry* € M;:. Clearly 7 is linear.

Fix z* € Mi. Let K be the null space of z* Since M C K, there is
a linear functional A on Y such that Anm = z* The null space of A is
7(K), a closed subspace of Y, by the definition of the quotient topology
inY = X/M, and so A is closed. By the closed graph theorem, A € Y'*.
Hence 7A = Ax = z*. Therefore the range of - is all of M.

Fixy* e Y. fy € Y, |lyll = 1, and r > 1, the definition of the
quotient norm in X/M shows that there is an z, € X with ||z.] < r
such that 7z, = y. Then

ly*(y)] = ly*(7(zo))]
= |ry*(zo)|
< ry*lllleoll < rliry™il

so
ly*II < Tyl
On the other hand, ||rz| £ ||z|| for every ¢ € X. Then
[(ry™)(z)| = ly"(w(x))]
< lly™llliw ()]
< g™l
so ||[ry*|| < lly*||. Therefore ||Ty*|| = ||y*||. This completes the proof.

By the Hahn-Banach Theorem, every subsoace of a normed linear
space X has the Hahn-Banach extension property in X*. Moreover, X*
is closed. From the above theorem, we obtain the following corollary.

COROLLARY 4.2.[2,5]. Let M be a closed subspace of a Banach
space X. Then

(a) The Hahn-Banach theorem extends each m* € M* to a func-
tional z* € X*. Define

om* =z* + M*.
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Then o is an isometric isomorphism of M* onto X*/M*.
(b) Let 7 : X — X/M be the quotient map. Put Y = X/M. For
each y* € Y*, define
Tyt = y*m.
Then 7 is an isometric isomorphism of Y* onto M*.

Next, we have the following property that, if M has the Hahn-
Banach extension property in V', then an extreme point of B(M3;) can
be extended an extreme point of B(V), where B(V) is the closed unit

ball of V.

THEOREM 4.3. Let M be a subspace of a normed lincar space X
and let V be a closed subspace of X*. If M has tae Hahn-Banach
extension property in V' and f € ext(B(My)), then f has an extension
* € extB(V), ie, extB(My) C {z*|y : =% € ertB(V)}, where
ext(B(V')) is the set of all extreme points of B(V).

Proof. Let E be the set of all norm preserving extensions of f to X
inV,ie, B ={c* € V:z*py = fllz*] =1 = ||f]}. Since M has
the Hahn-Banach exteusion property in V, E # ¢. Let #*,y* € B(V),
0 <A<Tlandz* = Ar*+ (1~ Ay* Since ||z*]| = 7, it follows that
lz*|l = lly*I| = 1. Further, f = z*|3 = Az*|p + (1 - A)y*|a. Since
[ € extB(MY), o* |y = y*|m = f. Thus z*,y* € E, and E is an
extremal subset of B(V').

Let {z}} in E and z; — z* in the weak* topology. Then for all
y €M, fly) = x3(y) -» *(y) so f = z*|p. Note that if r} — z* in
the weak™ topology, then ||z*|| £ liminf||z}||. Thus |z*|| < 1. Since
z* is an extension of f and V is closed, ||z*|| = 1 anl 2* € V. Thus
t* € E and E is a weak*-closed in V and hence in B(1"). Since B(X*)
is weak™ compact, B(V') is weak* compact. Hence E has an extreme
point x* so x* € extB(V). [Note that if E is an extremal subset of K,
then ertE == ENexrtk |

Since every subspace has the Hahn-Banach extension property in

X™*, we have the following well-known result:

COROLLARY 4.4. Let M be a subspace of a normed linear space X
and let f € extB(M*). Then f has an extension z* € extB(X™), ie.,

crtBIM™) C{a”|p: 2" € et B(X™)}.
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5. Hahn-Banach extension property

In this section we give the definition of V-Hahn-Banach extension
property and the relation between the Hahn-Banach extension property
in V' and the V-Hahn-Banach extension property.

DEFINITION 5.1. Let M be a closed subspace of a normed linear
space X and let V be a subspace of X*. If for each m* € M™, there
exists f € V such that

1) flp = m*,

i) Al = [lm”|i;

we say that A has the V-Hahn-Banach extension property.

PROPOSITION 5.2. If M has the V-Hahn-Banach extension prop-
erty, then M has the Hahn-Banach extension property in V, but the
converse 1s not true.

Proof. By the definitions, the V-Hahn-Banach extension property
implies the Hahn-Banach extension property .n V. Next we will give
an example that the converse is not true.

EXAMPLE 5.3. Let X = R? be the Eucliden 3-space,
M = span{(1,0.0)} and V = [(0,1,0),(0,0,1)]. Then M has the
Hahn-Banach extension property in V', but A does not have the V-
Hahn-Banach extension property.

Indeed, let 1n* = (1,0,0). Then there does not exist f € V' such
that

(i) flas = m*, i) 151 = Il

Even though there does not exist an extension of m* = (1,0,0) in
V, M does not have the V-Hahn-Banach extension property but M
has the Hahn-Banach extension proeprty in V.

THEOREM 5.4. The following are equivalent:

(1) M has the V-Hahn-Banach extension property.

(2) M* C V|p and M has the Hahn-Banach extension property in
V.

Proof. Suppose that M has the V-Hahn-Baaach extension property.
Then for each mm* € M*, there exists f € V sach that f|a = m™ and
Il = |lm*]]. Since for each f € V, fip € M*, there exists fo € V
such that || fo| = || fla]l. Hence (2) holds.
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Conversely, suppose (2) holds. Since M* C V|m, for each m* € M*
there exists f € V such that f|pr = m*. Since M has the Hahn-
Banach extension property in V, M has the V-Hahn-Banach extension
property. Hence (1) holds.
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