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THE INVARIANCE PRINCIPLE FOR
ASSOCIATED RANDOM FIELDS
TAE-SUNG KiM* AND EUN-YANG SEOK

1. Introduction

Let {Xl 1 € Z%} be a random field on some probability space
(2, F, P) with EX; = O,EX;" < oo. For n € N put

Snlz Z X:,_, (11)

1<j<n1
assuime
n"?ESE —, % €(0,00), (1.2)
and define
[Tltl] [n:‘d

Wa(t) = (on?)™? >3 X, (1.3)

n=l1 Jd =1

where W,(t) = 0 for some t; = 0. Then W, is a measurable map from
(Q,F) into (D4, B(Dy)) , where Dy is the set of all functions on [0, 1]¢
which have left limits and are continuous from the right, and B(D,) is
the Borel o -field induced by the Skorohod topology. {X; :j € Z%}
is said to fulfill the invariance principle if W, converges weakly to the
d— parameter Wiener process W on Dy.

In this paper we investigate the invariance principle for random fields
satisfying a condition of strong positive dependence called association.
A finite collection {X;,---,X,,} of random variables is associated if
for any two coordinatewise nondecreasing functions f, f, on R™ such

that f, = f(X1,---,Xm) has finite variance for 1 = 1,2, there holds
COV(f],fg) > 0. An infinite collection is associated if every finite
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subcollection is associated (cf. Esary, Proschan and Walkup [7]). Many
recent papers have been concerned with limit theorems for associated
sequences (see, for example, Newman [9]).

Burton and Waymire [5] extended the notion of association to the
random measure and proved the central limit theorem for associated
random measures.

Burton and Kim [4] obtained the following invariance principle for sta-
tionary associated random fields satisfying finite 6— susceptibility cri-
terion which used a result of Bickel and Wichura [1] allowing them to
conclude tightness.

THEOREM A (BurTON, KiM (1988)). Let {X,] be a stationary
associated random field with EX j o= (),E,X]? < oo. Assume there is a

positive constant C so that for alln € N

£

Then {X; : 5 € Z%} fulfills the invariance principle.
Burton and Kim[4] applied Theoremn A to the random measure as
follows:

'Snl

onz

M} <C, (1.4)

THEOREM B(BURTON, KiM(1988)). Let X be a srationary associ-
ated random measure. If there is a constant C' < oo depending only
on X so that for all A 5 I we have

E|IX(A) ~ EX(A)|**) < (7|A|‘+%_

where |A| denotes the Lebesgue measure of A and I — [0,1]%. Then X
satisfies the invariance principle.

Birkel[3] extended the invariance principle of Newinan and Wright
[10] to nonstationary case and obtained the following invariance prin-
ciple for one parameter associated processes

THEOREM C(BIRKEL(1988)). Let {X;:j € N} Le a sequence of
associated random variables with EX; =0, EX? < oo Assumne

E(Wats)Wo (1)) —, min{s,t} for s,t €0, 1] (1.5)
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{(Wa(t) = Wa(s))? :n € N,s,t €[0,1]} is aniformly integrable
(1.6)
Then {X,;; € N} fulfills the invariance principle.

Kim and Han[8] improved the invariance principle of Birkel{3] to a
two-parameter case by applying Theorem 10 of Newman and Wright
[10]. The problem of extension of this invariance principle to the
d—parameter case (d > 2) is still an open problem[10].

Our aim of this paper is to extend Theorems A and B to the nonsta-
tionary case by adding a condition on the covariance structure and to
provide a new invariance prineiple for an array of nonstationary associ-
ated multiparameter random variables by strer.gthening the hypothesis
of uniform integrability of Theorem C.

In Section 2 we introduce some preliminary results for the proof of
the invariance principle for nonstationary associated random fields. In
Section 3 we will obtain a general invariance principle for d— parameter
associated processes (Theorem 3.1) which requires no stationarity by
combining the ideas of Theorems A and C and apply this notion to the
associated random measure in Section 4.

2. Some results for associated random fields

If t = (1,42, - ,tq), let |t| stand for the product 1ty -tq, and
| t I= max{|ts]. [t2],- - |tal).

THEOREM 2.1. Let {X; :; € Z%} be an associated random field
with EX, =0, EX]2 < oo and define W, (+) as in (1.3). Assume

E{W2(t)} ——n|t| for 0<t <1 (2.1)

Then the following conditions are equivalent:
(1) E{Wa(8)Wn(t)} —n |s] for 0 <s <t <L

(iii) E{(Wa(2) = Wu(8)(Wn(1) — Wa(w))} —n O,
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(i) = (ii1). Since the random variables are nonnegatively correlated,
it follows from (2.1) and (ii) of Theorem 2.1 that

0 < E{(Wa(t) = Wa(s)(Wa(z) = Wa(w)}
< E{(Wa(t) = Wa(Q)NWa(l) — Wa(2))}
== E{Wn(é)Wn(l)} - E{Wg(_t.)} —+n 0

(i) = (3).

E{Wa(s)Wa(t)) |

= E{(Wn(-‘l) - Wn(g))(Wn(.t.) — Wa(s) + Wa(s) - W..(0))}

= E{(Wn(is-) - W%(Q))(Wn(i) - Vvﬂ(é)) +E(Wn(§) - W’fn(g))Q} —3n |§l
according to (2.1) and (iii) of Theorem 2.1.

THEOREM 2.2. Let {X, : j € Z%} be an associated random field
with EX; = 0, EX? < 0o and define W,(-) as in (1.3). If{X;: j € AS
fulfills the invariance principle, then

E(Wa()Wa(t)) ——n || for 0<s <t < L (2.2)

Proof. Since the invariance principle is fulfilled, {¥/2(¢) : n € N}is
uniformly integrable and hence

E{W:(t)} —n E{W*(t)} =|t| for 0<t <1,

according to Theorem 5.4 of Billingsley[2]. By Theorem 2.1 it remains
to prove

E{(Wn(t) = Wa(8))(Walv) = Wa(w))} —», 0 (2.3)

To prove (2.3) : Let 0 < s < ¢ < u < v <1 be givea. Since the in-
variance principle is fulfilled, {W2(t): n € N} is uniformly integrable.
Hence

{Wa(t) = Wa(2))(Wa(v) = Wa(u)) : n € N} (2.4)

is uniformly integrable. According to Theorem 5.4 of Billingsley[3] and
(2.4)
E{(Wa(t) = Wals))(Wa(u) — Wa(u))}
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—a E{(W(8) - W()(W(2) -- W(u)))}.

But
E{(W(t) -~ W(s))(W(v) — W(u))}

= E{W(t) —

Wis)}E{W(z) — W(u)} =

which proves (2.3).

Theorem 2.2 shows that (2.2) is a weak form of stationarity and a
necessary condition for the invariance principle.

3. An invariance principle

A subset B of [() 1) is called a block if it is of the form II4 $sjytj)
where the (s, ] s, = 1,--- ,d, are half closed subintervals of [0, 1].

For each ¢, 1 5_ 1 < d, let

0<al? <l <al? < b <<l < B =

be real numbers. Call a collection of blocks in [0,1]? “strongly sepa-
rated” if it is of the form {H‘li(as:),b;')] 1<k <n1<i<d}orifit
1s a subfamily of such a family of blocks.

Disjoint blocks B and F are neighboring if they abut (for example,
when d = 3 the blocks (s,?] x (a,b] x (¢, d] and (¢, u; X (a,b] x (¢, d] are
neighboring (0 < s <t < u < 1). For each block B = (s,t] = II{(s,, t.],
let

B)= > X;, W.B)=(on?)"'5,(B) (3.1)
JENB

where nB = (ng, nﬂ = NI¥(ns;, nt;) for B = (¢, t]. If we consider X =
{X(2) : t € [0,1]?} as a stochastic process, then the increment X(B)
of X around a block B = I1¢(s,,t;] is given by

X(B)y=Y - Y (-1+Ee

51-0 1 54_0 1

X(s1ter(ty —s1),820 +e2(ta — s2), -+ 50 +ealta — s4))-
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THEOREM 3.1. Let {X; : j € Z%} be an associsted random field
with EX; =0, EX]2 < oo and define W, (-) as in (1.5). Assume

E{an(i)wrn‘_t_)} “Tn ’:‘il for (_) S S S t < _1..~ (32)

E\W.(B)|*** < C|B|'*%, (3.3)

Then {X;:j € Z%} fulfills the invariance principle.

Proof. By Lemma 2 of Deo(1975) it is sufficient to show that W, (+)
converges weakly in the Skorokhod topology to a stochastic process W
which has the following properties:

(a) E{W(®)}=0.B{W(t) ) =ltl, 0<t<L,

(b) W has continnous paths.

(¢) Increments of W around any collection of strongly separated

blocks in [0,1]¢ are independent random variables.
Note that for a block B = II¢(s,.#;] C [0,1])¢

Wa(B) = (on?)™! Y X, (3.4)
lGTLB

where nB = I1¢(ns;, nt;]

From Chebyshev’s inequality, Schwarz inequalty, and (3.3) it follows
that for neighboring blocks B and F

Plmin(|Wa(B)|, [Wa(F)]) > A
< AT El{min(|Wa(B)|, [Wa(F))}* ]
N B WL (B) T Y E(|Wa(F)|* )3
ATEIC B RO F) T (3.5)
AT B F))E)
S ATEC(B|+ | F|)
= A" CIB U F|Its,

IA

IA

IA

Thus by Theorem 3 of Bickel and Wichura(1971) the following tight-

ness condition (3.6) is in force

lienzb sup P{w(W,,,8) > e} — 0 as é | 1) (3.6)



[
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where w(Wy,,0) = sup [W,(s)— Wy(t)| and | s—1 ||= max{|s, —
lls—til<é

til,- -+ ,1s4 — ta|} and thus the sequence {W,} is tight.

It should be noted that Bickel and Wichura[l] assumed that W,(-)

vanishes along lower boundary of [0, 1]¢:

>T0,1] x - x [0,1] x {0} x [0,1] x -+ x [0, 1]
1<p<d

( {0} is in the pth position). But by (3.3), P(YienX; =0y =1
if [B] = 0, so a version of W, exists whicl is zero along the lower
boundary. Let X be a limit in distribution of a subsequence of {W, :
n € N}. Then it follows from (3.6) and Thecrem 15.5 of Billingsley|[2]
that X is continuous with probability one. It suffices to show that X

is distributed like W. From assumption it is casily seen that
EWa(t) —n 0, EWZ(E) —p |t]. (3.7)

By (3.3) for n large enough

wfen

E(Wa(t)*T) < Cit)* (3.8)

and so {W3(t) :n € N} and {W,(t) : n € N} are uniformly integrable
for every t € [0,1]%. As
Wa(t) —n X(t), WiHt)—., X*2)

(3

in distribution (for a subsequence), Theorem 5.4 of Billingsley[2] and
(3.7) imply
EX()=0, EX(t) = 1]

According to Theorem 19.1 of Billingsley[2], X is distributed like W
if X has independent increments, that is for the strongly separated
blO(‘.kS, BlvB21 e aBka

X(By), X(B,),--- ,X(B}) are independent for all k€ N, (3.9)

where By = (_t.k_lafk]a 0< ty < < iy

INA

1
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To show (3.9): Since
(Wa(B1), -+, Wa(Bk)) =n (X(B1), -+ X(By))

in distribution, and since the W, B;)’s are associated by ( Py ) of Esary,
Proschan and Walkup [7] X(¢,) - X(ty), -+, X(#x) — X(t;_,) are as-
sociated, according to (Ps) of [7]. A similar argument as above (using
Theorem 5.4 of Billingsley [2] and the fact that associated random
variables are nonnegatively correlated) yields, for 7 # j, B; = (s,t] and

Bj = (u,u],

Cov(X(B,), X(B;)) = limp —coCov(Wa(Bi), W,(B,))
= M p—oe Cov(Wa((s, 2]), Wal(u.2]))
< limp oo Cov(Wa(t) = Wa(s), Walv) — Wa(w))
=0, 0<s<t<u<p<l,

according to (iii) of Theorem 2.1. Hence the X (B;)'+ are associated
and uncorrelated random variables and thus independent by Corollary
3 of Newman(9]. This proves (3.9) and therefore the proof of Theorem
3.1 is complete.

4. Applications

In this section we will apply the notions of associated random fields
to the random measures, that is, a simple argument using Chebyshev’s
inequality allows us to extend the invariance principle for associated
random fields to random measure. B? denotes the collection of Borel
subsets of d--dimensional Euclidean space RY. The space M of all non-
negative measure y defined on (R?, B¢) and finite on bounded sets will
be equipped with the smallest o —field containing basic sets of the form
{p€M:uA) <r}for Ae B’ 0<r < oco. A random measure X
is a measurable map from a probability space (2, F, I') into (M, M),
the induced measure Px = P o X! on (M, M) is the distribution of
X and if X is a random measure and B¢ is a Borel subset of R? then
X(B) represent the random mass of the region B.

For the random measure X define the I —renormalization of X to be
the signed random measure X g where

X(KB) -~ EX(KB)

Xup(B) = I(%
a

(4.1)
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and let X (¢) = Xg(ty, -+ ,tq) be defined by
Xk (t) = Xp((0,23] x - x (0,¢4]) (4.2)

fort € [0, oo)dk Let { X} be a sequence of random measures on R%. A
set function X satisfies the central limit theorem if for any bounded
B € B X, (B) converges in distribution to N(0.|B|) as ' — oo
where X i (B) is difined in (4.1) and |B| denoes the Lebesgue measure
of B and the random measure X satisfies the invariance principle if X
converges weakly to the d-—dimensional Wier er measure W,

DEFINITION 4.1 (BURTON,WAYMIRE(19&5)). A random measure
X 1s associated if and only if the family of random variables F =

{X(B): B a Borel set } is associated.
THEOREM 4.2. Let X be an associated rimdom measure with EX
(B) =0, EX? B) < oc and define Xx(t) as .n (4.2).  Assume

E{Xr(s)Xg(t)} »rls] for 0<s<t <1 (4.3)

For A € B¢ A bounded, |A] > 1, there exist: constants C' < oo, and
6 > 0 such that

E(]X(A) - EX(A)*18) < (oA D), (4.4)

Then X satisfies the invariance principle.

Proof. Note that for a block B C [0, 1]4
X(KB) - EX(KB)

- d
oK

where, if B = IIZ_ (s;,1,], then KB = % (Ks;, Kt;]. Like in (3.5)
from (4.4), it follows that for neighboring blocks B and F,

Xp(B) = (4.5)

Pimin(| X (B)|.| Xk (F)| > Al
< ATENC(|BU R
and thus by Theorem 3 of Bickel and Wichura[1] the sequence { Xy} is
tight. Like in the proof of Theorem 3.1, by (+t.4), P(X(A) = 0) = 1 if

|A] = 0, so a version of X}y exists which is 0 aiong the lower boundary.
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Suppose X is the limit in distribution of a subsequence. Then X is
continuous with probability one by the similar arguments in the proof
of Theorem 3.1. It suffices to show that X is distributed as W. From
(4.5) and condition (4.3) it is easily seen

E(Xy() =0, EXk(t) =k It| (4.6)

By condition (4.4), for K large enough,
ok 1 s

2y <« o P I

BXR(O[*) € g O R

and so {Xx(t)} and {X%(¢)} are uniformly integrabe for every ¢ €
[0,1]¢. As

Xp(t) = X(@), X&(t) —»x X2(1)

in distribution, Theorem 5.4 of Billingsley[3] and (4.6) imply that
EX(t)=0, EX*(t)= [t

Finally let By, -+, B,, C [0,1]¢ be strongly separated blocks, and

variables X (I;) are nonnegative correlated it follows from (4.3) that

Cov(X x(B:), Xx(B;)) (4.7)
SCov(X k(1) — Xn(s), Xk(v) — Xx(n)) =k 0

according to Theorem 2.1, where I; = (j —1.j] for 1 <) € A

Since X g (B;)'s are associated, by Corollary 3 of Newman(9] and (4.7)
the X (B j)’; are mndependent as A — oo. Hence X must have indepen-
dent increments. Thus, every subsequence { X} of { X} has further
subsequence of { X~} which converge weakly to the Wiener measure
W on [0, 1]%. It follows that X converges weakly to the d—dimensional
Wiener measure W.
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