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EQUI AND UNIFORM STABILITY
IN DYNAMICAL POLYSYSTEMS

SUNG Kyu CHoIL. YooN Hor Gu ANI: JONG SUH PARK

1. Introduction and Preliminaries

The subject of Liapunov functions constitutes a central theme in
the theory of differential equations. It provides powerful tools that can
be used to study the behavior of the solution:..

The classical theorem of Liapunov on stability of the zero solutions
for a given differential equation makes use of an auxiliary function
which has to be positive definite. Also, the time derivative of this
function, as computed along the solution, has to be negative definite.
This auxiliary function is called a Liapunov function in the theory of
differential equations or more generally dynarical systems theory.

Kalouptsidis, Tsinias and Bacciotti studied stability concepts which
can be described by suitable versions of Liapunov functions in the
theory of control systems and the theory of dvnamical polysystems.

Kalouptsidis[3, Theorem 5.7] proved the equivalence of absolute as-
ymptotic stability (A.A.S.) and the existence of a Liapunov function
in the topological abstraction (X, D) of the control system, where D
is a collection of dynamical systems on a metric space (X,d). And
Tsinias proved that if a compact subset of the state space X is A.A.S.,
then it has a Liapunov function defined on the interior of the region
of attraction [4, Theorem 18]. They showed that Liapunov functions
guarautee A.A.5. in dynaical polysystems |5, Theorem 24).

Also, Tsinias and Kalouptsidis {6, Theorem 3] generalized a stability
theorem in a single dynamical system [2, Theorem V. 4.5, i.e., a-
stability for a closed subset M in a locally coripact space X.

In this paper we analyze the stability concepts, mainly equistability
and uniform stability, for a closed subset in dynamical polysystems by
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means of suitably defined Liapunov functions, which generalize theo-
rems presented in [2, Theorem V. 4.7 and Theorem V. 4.9] and give
a counterexample for an equistability theorem of Bhatia and Szegé [2,
Theorem V. 4.7].

We recall some definitions from [5].

Let X be a locally compact metric space with a metric d. A dynam-
ical system on X is a continuous map 7 : R x X — X satisfying the
conditions

(1) m(0,z)==xforall x € X,

(i1) n(t,m(s,z)) =n(t +s,z) forall z € X and t,s € R.
We write n(t,z) simply as tz. In line with this notation, if A ¢ R
and M C X, then AM is theset {tz : t € A,z € M}. If A = {t}
or M = {z}, then we simply write tM and Az for ‘¢t}M and A{z},
respectively. For any 2 € X, the set Rz is called the trajectory through
T.

We call a family of dynamical systems {m; : i € I} a dynamical
polysystem on X. Dynamical polysystems arise in coritrol theory.

If 2% denotes the set of all subsets of X and R* the set of non-
negative real numbers [0, +00), the reachable map of the polysystem
{mi: 1 € I} is the multivalued map R: Rt x X — 2% defined by

R(t,r) = {y € X : there exist an integer k,7q,- -, 75 in [
and t1,- -, tx in R such that Zf,- =t and

i=1

y= Ntk(tkvﬂ-ik_l(tk—la tt ~,Tr,‘](t1,1“,), T ))}

Also, we define R(z) = 0<%J< R(t,z) for all z € X. It should be noted

that while R(t,z) is assumed continuous, R(r) is not necessarily so.
The stability theory of polysystems is roughly concerned with how
the reachable sets R(t, ) are put together on the state space X.
For a point z in X, a subset M in X and ¢ > 0, we denote

d(M,zr) = inf{d(x,y) (Y € .M},
B(M.e)= {a € X : d(M,z) < £}.
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Also, we denote by M the closure of the set .if.

We say that a closed subset M of X is

stable if for each = in M and € > 0, there exists a § > 0 such that
R(B(z,8)) C B(M,¢),

equistable if for each « ¢ M, there exists an ¢ > 0 such that ¢ ¢
R(B(M,=));

untformly stable if for each ¢ > 0, there existe a & > 0 such that
R(B(M,4)) C B(M,¢).

Finally, a multivalued map ' : X — 2% ic called a c.c. map if for
each compact set K in X and each z in K with T'(x) ¢ K, T(2)NOK #
0, where 0K is the boundary of K.

It is not hard to show that the reachable map R is a c.c. map.

2. Equistability and Uniform Stability

Bhatia and Szegé [2] developed several notions of stability in a single
dynamical system and provided criteria for these in terms of Liapunov
functions. First, we investigate some stability behaviors which gener-
alize Propositions V. 4.2 and V. 4.4 in [2].

PROPOSITION 1. If a closed subset M of X is uniformly stable, then
it is both stable and equistable.

Proof. 1t is clear that M is stable. For each = ¢ M, let ¢ =
d(M,z) > 0. Then we have R(B(M,$)) C B(M,z/2) for some & >
0. We claim that B(z,2/2) N R(B(M,¥6)) (0 Assuming the con-
trary, there exists an element y in B(m,a/?) N R(B(M,#4)). Since
vy € R(B(M,$)) C B(M,£/2), we have D(M.y) < /2. This implies
that

=d(M,z) <d(M.y)+d(y,z) <e/2+4:/2=¢,

a contradiction. Thus we must have z ¢ R(B(M. }). Tt follows that
M 1is equistable.

PROPOSITION 2. Let M be a compact subset of X. If M is stable,
then it is uniformly stable.

Proof. Let ¢ > 0 be given. Since M is stable, for each «+ € M there
15 a 6; > 0 such that R(B(r,6,)) C B(M,e). Also, there is a & > 0
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such that B{(M,é) C UMB(.I,(WI) by compactness of M. Thus
re
R(B(M,6)) C R( U B(z,é;)) = U R(B(x,6;)) C B(M,¢).
reM €M

This means that M is uniformly stable.

PROPOSITION 3. If a compact subset M of X is ecuistable, then M
is uniformly stable.

Proof. Suppose that M is not uniformly stable. Then there ex-
ists an € > 0 such that for each ¢ > 0, R(B(M,é)) ¢ B(M,e). We
can choose an a > ( such that B(M,«) is compact and B(M,«) C
B(M,e). 1t is clear that R(B(M,«/n) ¢ B(M,«) for each positive
integer n. It follows that R(z,) ¢ B(M,a) for some sequence (z,)
in B(M,a/n) C B_(]T/I—TJ Moreover. we have R(x,) N OB(M,a) # )
because R is a c.c. map. Thus we can choose a sequence (y,) in
R(x,) N OB(M,«). This sequence (y,) has a subseqiience which con-
verges to some point y in 0B{M,«) since 0B(M, «) is compact. But
y ¢ R(B(M, ﬁ)) for some # > 0 by the equistabilit: of M. Clearly,
the set X — R(B(]W 3)) is a neighborhood of y. We can select an in-
teger m such that y,, ¢ R(B(M,3)) with a/m < 3. Jowever we have
Ym € R(xy) C R(B(M,a/m)) < R(B(M, )). This i a contradiction.

Therefore M is uniforinly stable.

For a closed subset M of X, we have the following.

PROPOSITION 4. If a closed subset M of X is either stable or equi-
stable, then it is positively invariant.

Proof. Assume that M is stable but not positively invariant. Then
R(z) ¢ M for some r on M. Taking y € R(x) — M, we can choose
an € > 0 such that y ¢ B(M,s). By the stabilitr of M we have
R(B(x,6)) C B(M,¢) for some 6 > 0. Thus y € R(x C R(B(r,8)) C
B(M,¢), a contradiction. Now, assume that M is ecuistable but not
positively invariant. Then we can select a point y in R(r) — M for
some point r on M. By the equistability of M,y ¢ R(B{M,¢)) for
some £ > (). Therefore

y € Rr) CR(M)C R(B(M,¢) )CR (I\[ E))

This contradicts the fact that y ¢ R(B{M,¢)). Conse juently, M must
be positively invariant. This completes the pr()of.
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REMARK 1. Propositions 2 and 3 are a generalization of Proposition
V. 4.2 in [2] and its converse is generalized as Proposition 1. Also,
Proposition 4 generalizes Proposition V. 4.4 in [2].

REMARK 2. For the differential equation on R
a' = z(sin(w/x))?

existence and uniqueness of solutions are true. and hence all continuity
requirements of R(t, ), for example, are good. Since all points z = %,
with n positive integer, are rest points, the origin r = 0 is stable.
Nevertheless, any Liapunov function ¢(r) with ¢(0) = 0 and ¢(x) >0
otherwise must be nonincreasing in (;%q L). The only way this is
possible is by having discontinuties at =z = 2. Therefore we can not
generalize the result about stability for a single dynamical system,
which is appeared in [2, Theorem V. 4.5).

In [2] the notion of equistability for a closed set in a single dynamical
system was introduced and the following result presented.

THEOREM (Bhatia-Szego)[2, Theorem V. 1.7]. A closed subset M
of X is equistable if and only if there is a function ¢ : X — R such
that

(1) ¢(x) =0 forz € M and ¢(x) > 0 for x ¢ M,

(2) For every ¢ > 0, there is a & > 0 such that olr) <
d(M,z) <,

(3) o(tx) < p(x) forz € X and t > 0.

if

(&)

However, the following example shows that this theorem does not
hold in general.

EXAMPLE 5. Let X = {(r,y) € R? : 7 <0 < y} U {(r.y) € R? :
>0,y > 1}. Define a function 7 : R x X — X hy

{ (x,ye™) if # <0,

it (r.y)) = (x,(y— Ve ™+ 1) if r >0,

Then 7 satisfies the conditions of dynamical system on X. We consider
a closed subset M = {(z,y) € X : 2 >0,y = '} and define a function
$:X — Rt by

- ifr< 0,

¢z, y) = { ly —1] ifz>

\
e
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Then ¢ satisfies the following conditions :

(1) #(z,y) = 0 if and only if (z,y) € M,

(2) For any ¢ > 0,¢(z,y) < € whenever d(M,(z,y}) < ¢,

(3) For each (r,y) € X and t € RY, ¢(¢(x,y)) < ¢(z,y).

Note that (0,0) ¢ M but (0,0) € Rt*B(M,¢) for any = > 0. This
shows that M is not equistable.

Now we improve the above theorem for equistabilizy.

THEOREM 6. A closed subset M C X is equistable if and only if
there is a function ¢ : X — R7Y satisfying

(1) ¢(z) =0 ifand only if r € M,

(2) Forany e > 0, thereisa é > 0 such that ¢(x) < e if d(M,r) <
s,

(3) Forallr € X andt e R, ¢(tr) < ¢(a),

(4) Foranyr € X ande > 0, thereisa $ > 0 such that d(x,y) < é
implies ¢(x) — ¢ < ¢(y).

Proof. By the equistability of M, we can take a se. I(x) = {6 > 0:
r ¢ R*B(M,é)}. Define a function ¢ : X — R* by

supI{z) ifzr¢ M,
o) = .
0 ifze M.

It is evident that ¢(r) < d(M, ) for every » € X.

Let £ ¢ M. Then ¢(z) > é > 0 for some 6 € I(a). Thus ¢(r) =
0 implies z € M and by the definition of ¢ the reverse is obvious.
Therefore ¢ satisfies the condition (1). For the condition (2), we note
that for any ¢ > 0. there is a 6 > 0 such that ¢(xr) I d(M.x) < & if
d(M,z) < é. In order to show that ¢ satisfies (3), let € M. Then
tz € M by Proposition 4. Thus ¢(tz) = 0 = é(z). Let + ¢ M and
suppose that there is an r € I(tz) — I(z). For any ¢ > 0, there is a
6 > 0 such that t+B(z,4) C B(tr,¢). Since z € ﬁrﬁm‘—),l}(a',b) N
RYB(M,r) # 0. Then we have sy € B(z,8) for some ; € B(M,r) and
s € R*. Therefore

(s +t)y =t(sy) € tB(x,8) C B(tr,e).
Since (s + t)y € R*B(M,r), B(tz,e) NRTYB(M,r) # §. This implies

that tx € R*B(M,r), a contradiction. Consequently, . (tr) C I(r) and
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it follows that ¢(tr) < ¢(z). Finally, we show that ¢ satisfics (4). For
any ¢ ¢ M and e > 0, there exists a § > 0in I(x) such that ¢(z)—¢ < 8.
Moreover there is an « > 0 such that B(z, o) \RYB(M, é) = 0 because
T é m(M,éi. Then we have ¢(y) > é > ¢tx) ~ ¢ since 6 € I(y) for
all y € B(z,a)

Conversely, we show that for each = ¢ M there is a & > 0 such that
¢ R*B(M,$). Let r ¢ M and ¢(z) = ¢ > 0. By the condition
(2), there is a & > 0 such that ¢(y) < ¢/2 whenever y € B(M, ).
Suppose © € RTB(M,6). Then we have B(a,1/n) N RYB(M,6) # 0
for each positive integer n. Thus t,7, € B'r,1/n) for some points
zn, € B(M,é)and t, € R*. Alsothereisana > 0such that ¢(y) > /2
if d{x,y) < a by the condition (4). We can take a positive integer m
with the property that t,,z,, € B(z,«) sinc> t,r, — = as n — o0o.
Then €/2 < ¢(tyom) < ¢(am) < £/2, a contradiction

REMARK. The function ¢ in the above theoremn need not be contin-
uous [2, Example V. 4.11].

Now, we have the following equistability theorem in dynamical
polysystems, which is a result parallel to Theorem 6, in a single dy-
namical system.

-

THEOREM 7. A closed subset M of X is equistable if and only if
there exists a function ¢ : X — R such that
(1) la)y=0ifandonly if x € M,
(2) For any ¢ > 0, there is a & > 0 such that ¢(z) < ¢ whenever
dM,x) <6,
(3) ¢(y) < ¢(z) for each x € X and y € I(z),
(4) For every x € X and ¢ > 0, there exists a & > 0 such that
¢(x) — & < ¢(y) whenever d(z,y) < b

Proof. We replace R B(M,-) by R(B(M, - ) about the condition of
the set I(ir) in the proof of Theorem 6. We only show that I(y) C I(z)
with y € R(t,r) for the condition (3). Assuming the contrary, there is a
6 € I(y)—1I{x). Since y ¢ R(B(M,$)), we have B(y,o)NR(B(M,8}) =
0 for some a@ > 0. Let y € R(t,r). Ther therc are iy, - - i, €
Ity, - t,e Rt and 2y, -, 2x,_; € X such that

I
Zn =1

1=
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and

I = Wil(tl,l"),.lfg = Triz(t23xl )" Y = Win(1ﬂ7$n—1)'

Also, there are «g,- -+, @, > 0 such that
Wi‘(tl,B(.’L',a())) - B(.T],a]), T '17ri,,(tn»B(‘Tn-I’(l’u—l)) C B(yﬁa)

by the continuity of 7;, ,k = 1,---,n. It is clear that = € R(B(M,é))
since 6 ¢ I(x). This implies that B(z,aq) N R(B(M,é)) contains a
point, say z. Taking

o= Trtn(tna R Wiz(tﬁls 7T1'1(t1,2)), M ')’
we have w € B(y,«). Also, we have
w € R(t,2) C R(z) C R(R(B(M,8)) = R(B(M,?)).

It follows that B(y,a) N R(B(M,§)) # @, which is a contradiction.
Hence we have ¢(y) = sup I(y) < sup I(z) = ¢(z). The proof that ¢
satisfies the remaining conditions (1), (2) and (4) is omitted because it
is parallel to the proof of Theorem 6.

For the converse, we can proceed as in the procf of Theorem 6

replacing R*B(M, ) by R(B(M,-)).
Finally, we obtain the following uniform stability taeorem.

THEOREM &. A closed subset M of X is uniformly stable if and
only if there exists a function ¢ : X — R* such that
(1) For any ¢ > 0, there is a § > 0 such that ¢(:*) > & whenever
d(M,z) > ¢,
(2) For any ¢ > 0, there is a § > 0 such that ¢(+) < ¢ whenever
d(M,r) <4,
(3) #y) < dlx) forany r € X and y € R(z).

Proof. Define a function ¢ : X — R* by

, ()
T) = sup ————r,
) = e T )
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where £(t, ) = sup{d(M,y) : y € R({,z)}. We show that ¢ satisfies
(1), (2) and (3). For any £ > 0, put é = /(14 ¢) > 0. Note that
d(M,z) =60,z). If d(M,z) > ¢, then

S £0,1) S €
14 60,0y " 14+

¢(z) =&

This implies that ¢ satisfies (1).

For the condition (2), we note that for each ¢ > 0,a/(1 + o) < ¢ for
some « > {). Since M is uniformly stable, there 15 a & > 0 such that
R(B(M,é)) C B(M,«). For any t € Rt, we have

R(t,r) C R(x) C R(B(M.b)) C B(M,«a),
if d(M,r) < é. It follows that ¢(t,z) < a. Therefore ¢(x) < o/i1 +
a) < €.

Now, to show that ¢ satisfies (3) we let y ¢ R(t.r). Then

ley)= sup d(M,z) < sun d(M, z)

€ R(s,y) 2€R(s.12(t,x))
=  sup d(M,z)=4(t4 s, x).
€ R+ 3,5}

Therefore ¢ satisfies (3) from the fact that

£(s,: 0+ s,
#(y) = sup ~——(—S—’—gl—~—- < sup —-—L O—ZL——M-I)
ser+ L+ s y) 7 emr 1+ U+ 5, 7)
() Ay (7 R .,"
= Sup— (s, 2) < sug __(il_)__, = ¢(r).

— < sup ;
s>t 1+ €s,0) 7 jepe 1+ €s,1)

Conversely, for any ¢ > 0, there is a 6 > 0 such that ¢(r) > & if
d(M,z) > ¢ by the assumption. Also, there is an a > 0 such that
#z) < 6 if dM,z) < a. Let + € R(B(M.a)). Then » € R(y)
for some y € B(M,«). If we assume that = ¢ B(M.¢), then we have
d(M,z) > ¢ andso ¢(r) > é. Sincey € B(M., ), d{M,y) < « and thus
#(y) < . Also we have ¢(z) < ¢(y). Hence & < é(z) < ¢(y) < b, a
contradiction. Therefore 2 € B(M,¢). This m ans that M is uniforiuly
stable and the proof is completed.
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