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POSITIVE SOLUTIONS FOR PREDATOR-PREY
EQUATIONS WITH NONLINEAR DIFFUSION RATES

IN KYUNG AHN

1. Introduction

In this paper, we will investigate the existence of positive solutions
to the predator-prey interacting system

—plz,u)Au = uf(z,u,v) in

—¥(z,v)Av = vg(z,u,v)
\ —ai-%fcu:O on of} (1)
an
Ov
% + ov = 0.

i a bounded region 2 in R™ with smooth boundary, where » and
Y are strictly positive functions, serving as nonlinear diffusion rates,
and k£, 0 > 0 are constants. Assume that the growth rates f, g are
C' monotone functions. The variables u, v may represent the pop-
ulation densities of the interacting species in problems from ecology,
microbiology, ete.

In [12], the solutions of the equations

—-Au =uM(z,u,v)
—-Av =vN(z,u,v) n

under the boundary conditions g—:; = g—:’l = () are investigated in the

campetition and symbiosis cases, using the monotone-iteration scheme.
For the predator-prey case, the variational approach was used in [4] for
the first time.
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In [5], [6] and [7], necessary and sufficient conditions for the existence
of positive solutions of the elliptic system

—dyAu = uM{u,v)
— dyAv = vN(u,v)
u=v =0 on d92

with constant diffusion rates have been established for all the possible
cases of monotonicities associated with the functions M and N. For
those works, index theory ([5], [7]) and decomposed opcrators ([6]) have
been employed to prove the existence of positive solutions.

Therefore, the problems of the existence of positive solutions for
the nonlinear interacting systems with constant diffusion rates are to a
large degree solved. However, in many chemical and binlogical systems,
the diffusion rates indeed depend on the densities u and ». Thus we
need to study the reaction-diffusion systems with noualinear diffusion
rate from this point of view.

To attack our problem, we first give some a prior: estimates on
solutions to the system (1) to have the compactness of the correspond-
ing operators for the noulinear elliptic equations. We then handle the
linearization to equations.

In section 2, we provide a sequence of lemmas which will be used
to prove the results in section 3. In section 3, we will give sufhi-
cient and necessary conditions for existence of positive solutions of (1)
for the predator-prey interaction. The existence of positive solutions
can be characterized by the spectral property of a certain operator of
Schréodinger type.

2. Preliminaries

In this paper we will consider problems in the space X = C(Q),
where 2 is a bounded region in R™ and let r(T') denote the spectral
radius of a linear operator 7.

Let f = f(x,£). Then f € F if and only if f € C(£2 x R™) and

(F1) f € CVin &, fe(x,€) < 0in Q x R, and for some N € R,
|fe(z,€)] < N where (z,8) € Q x [0, co].

(F2) f(x.0) > 0 and f(z,£) < 0, where (x,£) € Q x{cqg, oc) for some

constant ¢g > 0.
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- (F3) f(z,£) is concave down on the set of (z,£) where f(z,£) <0
Let ¢ = p(x,£). Then ¢ € G if and only if p € C(Q x R*) and ¢
is C'!'-function in ¢ which in addition satisfies
(G1) p(x,€) > & > 0 for some constant 6 snd £ € RY, z € §.
(G2) ¢ is nondecreasing and concave down in £ € RY.

LEMMA 1. Let f € F and ¢ € G. Then ﬁ%‘% is decreasing in u
for x € €.

Proof. We consider bounded regions ;, j = 1,2,3, € = {z €
Q : fle.ur) ’ 0 and f(x,u2) > 0}, Qz ={z € Q: flz,uy) <
0 and f(r,uy) > 0}, Q3 = {z € : f(x,uy) < 0 and f(z,uy) < 0}.
Then Q = U 2,02,

For z € Q) or = € Qq, it is easy to see the monotonicity of i.
Suppose x € Q3. Note that ‘P(II"‘) ‘P(T “2) and f(rlu‘) f(:"’:z) by

the assumptions (F3) and (G2). Since f( 1) < flr,uz) < 0, one

must have —L—“-‘l "’(I ”2) < j(z'“) “o(f‘"‘) Therefore we have that

X - f(r uy) fl:: ug) . flz,uy)/u flz,uz)/u
for 1 € 523’ wlr, ull) i rui) e u:)/ut - o(r,uy )/uj < 0. Thus for

{ . .
req, L ") is decreasing in wu.
plz,u)

LEMMA 2. Let P > 0 be a constant. Assume ¢ € G. Also let
0 h>0,heCQ) Where a € (0,1). Consider

-, u)Au+Pu=nh
(2)

5,
e +ru =0 on Of2.
dn

Then (2) has a unique positive solution u € C?*(Q?). Moreover, the

solution operator S such that u = Sh is compact in K or C(§Q), where

K is the positive cone of C(2).

Proof. The positiveness of solutions to (2) for h > 0 follows from
the strong maximum principle. First we show that the nonnegative
solution to (2) is unique when 0 < h € C%(12). Let u and » be two
distinct nonnegative solutions of (2). Without loss of generality, let
min, ¢q(u(r)—r(r)) < 0. Let u(zg)—v(z9) = min, cq(u(r)—v(z)) < 0.
Assume g € 9§2. Then by the minimality of v — v at zo, we have

Hu ‘-)%)~(~£"J < 0 and ku(rg) — v(zg)] < 0. Thus the houndary condition
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becomes [ﬂ%{—“—l—-a%:—“l]-i—m[u(xg)—v(xg)] < 0, which is a contradiction.
Thus z¢ € 0S2. Since u and v are solutions of (2), we have

— p(z,u)p(r,v)A(u — v) + Plup(z,v) — vp(z,u)) (3)
Zh(l')(w(f, v) - 99(‘1:’ uh)

Observe that at z¢ € Q, —¢(z0, u(z0))p(To, v(T0))A(u(z)—v(z0)) < 0
by the minimizing property of zo. Also we have P-[u(a¢)p(z0,v(x0))—
v(xo)p(o,u(xo))] < O since the nondecreasing function ¢ > 0 is con-
cave down. Hence the left side of (3) is negative. Since v(rg) > u(zg)
and h(zg) > 0, the right side of (3) is nonnegative, which is a contra-
diction. Therefore we must have u = v.

Next we shall prove the existence of a solution. First we can show
the a prior: bound in a space C?*(Q) of every solution to (2), where
a € (0,1) and then find a fixed point of the following equation

~Au = h—Pv
T el(z,v) (4)
. g—% +ru=0 on 01). '

Let u be a solution of equation (2) for z € Q, i.e., u is a fixed point
of equation (4) Denote Green’s function under the Robifi boundary
COIldltl()n ~ + k=0 by Ggr. Then

0= [ enten () ©)

Since ||Pu|loo < [}h]loo by a general maximum principle, we can esti-
h — Pu

mate.
Q Y

<N Grllprin-1llh = Pul|pn - 671 < K;2||Aljood ™

(6)

{foo-

aGR h — Py
ol Oz, P

6—~||h PuH]m/ o < 2hlled TN = KAl

r m-1
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where N = [ —~—"—_£;—— m and r = ||z — y||. Thus (6), (7) imply
r m-—1

1Dz ufjoe < (K hHoo)‘ (8)

So applying the elliptic regularity to (4) and the fact [|Vullo < M||A] oo,
we have u € W*™({) where m > n and by (8)

lullwzm < Clihlloo (9)

for some constant C. Since m > n. the Sobolev imbedding theorem
implies
lulleregay < Millhlloo (10)

where some a € (0,1). On the other hand, the Schauder estimate ([2])
gives

||z < Cr(n,o)(||u]lec + 671 lh — Pullca). (11)

Therefore |Jul|¢2.« 1s also bounded.

Let v € C%2(Q) and define T : C>%(2) — C**() such that u =
Tv is a solution of (4). Then T is continuous. compact and bounded.
Therefore the Schauder fixed point theorem provides a fixed point u
such that Tu = u.

The compactness of the solution operator & in C(§2) such that u =

Sh follows from (9), (10) and (11) by the Ascoli-Arzéla theorem.

COROLLARY. Let P > 0 and 7 > 0 be coustants. Suppose a(x) €
CY(2) and a(z) > &y > 0, Consider for a € (0. 1),

" —a(z)Au + Pu = h(z), Foe ()

(12)
?-u— + ru = 0. on 0N. '
. On

Then (12) has a unique solution u in C*(Q) and the solution operator
T such that u == Th is a compact operator in X = ('(Q2).

The following is well-known. We record this to use in the proof of
other results.
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LEMMA 3. Suppose a € C'(2) and a(x) > &y > 0 and b(r) €
L*>°(§2). Let T > 0 be a constant. Then there exists u > 0, u € C*(Q),
such that for a unique A\; > 0

| (13
?_ii +7u=0 on Of}. )

{ —a(x)Au + blzyu = Au
on

. . . . bz
Moreover, A, is increasing in a(x) and a ratio a((I;.

Let X be a Banach space and let F be a strongly positive nonlinear
compact operator on X such that F(0) = 0.

LEMMA 4. Assume F'(0) exists with r(F'(0)) > 1. If there is no
p € (0,1] in any neighborhood of which the equation u = uFu has a
solution u as {|ul| — oc, then F has a positive fixed point v such that
Fu = u in the positive cone K of X.

Proof. See Theorem 13.2 in [1].

LEMMA 5. Let T be a compact positive linear operator on an or-
dered Banach space. Let u > 0 be a positive element.

(i) If Tu > u, then »(T) > 1

(ii) If Tu < u, then r{T) < 1

(ii1) If Tu = u, then r(T) = 1.

Proof. See Lemma 2.3 in [5].

LEMMA 6. Let a(x) > 69 > 0 and b(z) € L°(2 . Also let P be
positive constant such that P + b(z) > 0 for z € ). Then

(1) M(a(x)A +b(x)) > 0 & r[(—a(z)A + P) (P b(zx))] > 1

(ii) A,(a(1A+b( N <0 r{(—a(@)A+ P)"YP +ba))] <1

(iii) M(a(x)A +b(z)) =0 & r[(—a(z)A + Py " (P + b)) =1

where )\1 is the first eigenvalue under Robin boundary condition.

Proof. Let ¢ > 0 be the eigenfunction correspond:ng to the eigen-
value Ay(a(z)A+b(z)). Then (~a(z)A+P)¢ = (P+b( Neo--A(alx)A
+b(z))é. So one can see that (--a(z)A + P)é >, = (P + b(x))¢ de-
pending on the sign of A\;(a(z )A-}—b( ). Let T := (—mj;r)A+P)”'(P+

b(z)). Then T is a positive compact operator under Robin boundary
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condition in C'(2) by Corollary. Therefore one may apply Lemma 5 to
get the results.

Consider the following equation,

— @z, u)Au = uf(z,u) in

14
Qﬁ-{»nu:O on O9. (14)
on

Next we shall linearize the equation (14) at u = 0. Use Lemma 2
to define the solution operator S in C(f2) by Su = @, where # is the
unique solution of

—(r,u)Au + Pu = uf{x, 1)+ Pu

y 15
a_u + st =10 on 0. (15)
on

Also we define the solution operator Sy, of linearization by Spw = v,
where v is the unique solution of

) 16
i 4+ rv =0 on JN. (16)

{ —¢(x,0)Av + Pv = wf(x,0) + Pw
on

LEMMA 7. The operator S is Frechét differentiable at v = 0, and
S'(0) = S5;.

Proof. Let « = Su be the unique solution of (15) and v be the
solution to (16). Assume that ||uflo is small. Then from (15) and
(16), we have

— @(z,0)A(T — v)+ P(i —v) = p(x,0)u fleyu) f(:r,O)]

elru)  ¢(z,0) (17)

1 1 R 1 1 o
Fole, 0)Pu| 2o = @(x,o)}~¢(m'o)pu[¢(x,fl) i so(f»o)]'

1
=

O(u — v)

n

+ k(u(r) —v(z)) =0 on Jf2.
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It is easy to see that ||iflcc = O(]|tllec), and ||hljec = o(||u]lec) When u
is small. Thus || — v|le = O(]|A|lee) = of||u|les)-

Let K = C(€2)" be the positive cone of the ordered Banach spa(‘e
C(2). We define the ordered interval [[uy,ug]] == {1 € C(R) : u; <
u < ug for uy, ug € C'(Qv)}. In the next two lemmas, A (A) denote%
the first eigenvalue of an operator 4 under the boundary condition

-g—-z— + ku = 0.

LEMMA 8. Let f € F and p € G.

(1) If Ai(p(2,0)A + f(2,0)) > 0, then the equations (14) have a
unique positive solution in C%(§2).

(i) If Ay (p(z, A+ f(r,0)) < 0. then u = 0 is the only nonnegative
solution of (14).

Proof. (1) Suppose A (¢(z,0)A + f(z,0)) > 0. If u is a positive
solution of (14), then () < u < ¢g by the general maximum principle.

Choose P > 2max{supg (o] | f(z,€)|,coL}. Let [)O,f:()j] denote the
order interval in C'(2). We define an operator A : ('(Q2) — C(£2) by
Au = S(uf(z,u)+Pu) where S is again defined as the solution operator
of the equation (2). Then 4 is an increasing strongly positive compact
operator from [[(}, ]} to C(Q) by Lemma 2. Note that u is a positive
solution of (14) if and only if u 1s a fixed point of the operator A. It
is easy to see that @ = ¢¢ is an upper solution of the equation of (14).
So we have A'(1i) < u. Also note that u = 0 is a solution of (14) and
Lemma 7 implies that 4'(u) = A'(0) = (—¢(z,0)A+ )7 [f(z,0)+ P).
Thus we have r(A'(0)) > 1 by Lemnm 6. Now applying Theorem 7.6
in [1], we have a maximal solution u in [[0, ¢o]].

(i1) Let u be a positive solution of (14). Then we Lave (o(r,u)A +
f(x,u))u = 0. This inplies X\ [p(z, u)A + f(z,i)] == 0. ‘Then since
f € Fandg e, %j—;—) 1s decreasing in u by Lemina 1. So by the
last part of Lemma 3, we have A;[p(x,0)A + f(z,0)] > A p(r, u)A +
f(z,u)] = 0, which is & contradiction.

Next we show that the above solution is unique. Stppose u; and u,
are two positive solutions of (14). Let u be a maximal solution of (14).
Then u > wy and u > uy. If we can show @ = u; aad 4 = usp, then
u; = uz. Thus it suffices to show that any other positive solution u;
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must coincide with u. Since @ and u; are solutions of (14), we have

—u1 A\t uAu o = f(‘T’u’) i f(‘raul)
Aﬁ “A“+“m“].L”“[wmu) waun] (18)

The left integral of (18) is

du Ou
[—u1 At 4+ vlAuy] = / [—u]-—-u~ + u—u-l] = [urku — ukuy] = 0.
Q N on on 219)
Since —é—((*—z—’% is decreasing in u by Lemma 1 , the right side of (18)

is nonpositive. By the continuity of f and g, we must have u = u;.

The following lemma is a generalization oi' Lemina 4 [6]. Here the
diffusion rate is nonlinear. According to Lenima 8, the equation (14)
has a unique positive solution. We denote it by ug, s. Let u,, s, be
the unique positive solution of

— nlr, W)U = ufa(s,u)
¢ 19
f;i‘_ + k=10 on Of1. (19)

o

LEMMA 9. Agsume f € F and p € G.

(1) (¢, f) = uy s is a continuous mapping of G x F — C1* (1 x RY)
for some o € (0,1).

(i) If I.c% > % # ;%, for x € Q, then either uy, 5, > Uy, f, OF

Upy, L T Uy, fy = 0

Proof. (i) The argument is similar to tha in Lemma 4 [6]. Here
we just give a simple modification for the uniform boundedness of
{u¢, 5. }- Note that since f, — f and @, -+ @, there exists &' > 0
such that

”“«pn,fn fn(‘,l‘"u‘l;'nvfn) + P"'wn,f,.”oo <K

Therefore, as in the proof of Lemma 2 with h, = ug, g, f(2, %0, 5, ) +
Pug, 5., we have |lug. 5 llw2m@) £ N by (3), and so there exists a
subsequence {u, 1. } such that u,, ;. @ in W2(Q). Also we have
by the Sobolev imbedding theorem, |ju, .|l 1a¢n) < M where M is

a positive constant. Thus there exists a subsequence of {ug, 5.}, say
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{uy, 1.} again, such that u,, s, — 4 in C"*(Q) for some a € (0,1).
As in the proof of Lemma 2, we conclude that @ is a solution. Then the
positiveness of u., s, implies & > 0. So by the uniqueness of solution,
i = u,,s. Therefore uy,, 5, — u, s in CV*(Q).

(11) Suppose i‘T > ;% If we assume Ay(¢1(x,0)A + fi(r,0)) <0,
then by Lemma 8, uy, ¢, = ug, 5, = 0. So suppose Aj(pi(z,0)A +
fi(z,0)) > 0. Then u,, g > 0. Since —~Au = u qf"l((iz)) > uiz((i’::)),
Uy, f, 18 @ lower solution of (14). Also note that u == ¢y is an upper
solution. Thus there exists a solution u of (14) such that ug, f <
t < ¢g. By the uniqueness of positive solution of the equation (14),
U = Uy 1. S0 we have uy, > uy,, . Apply the strong maximal

principle to get ug,, 5 > Uy, f,-

3. Existence Theorem

In this section, we consider the system (1):
—lr,u)Au = uf(z,u,v)
~ P(z,v)Av = vg(zT,u,v)

Qt—l +ru=0 on OF)
on

v N —0

E. ov =

For the predator-prey interaction, we make the following assump-
tions on the system.

(H1) f, g € C1(2 x R* x RY) satisfy
fulz,u,v) <0 fulz,u,v) <0 foru v>0
gulz,u,v) >0 gol(z,u,v) <0 foru v >0
Moreover, f,, gu # 0 and all partial derivatives are uniformly bounded

on I x Rt xR*.
(H2) There exist positive constants C;, Cy such thut

flr,u,0) <0 for u > C,
g(z,0,v) <0 for v > Cy
9(x,C1,Cy) <0
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(H3) Let @(x,u), ¥(z,v) € C(Q x R*) and ¢(z,), ¥(z,) € G.

The assumption (H1) describes how these species u, v interact with
each other, while the assumption (H2) indicates that the model under
consideration is logistic

Let Ay «(A), Aj o(A) denote the first eigenvalues of an operator A
under the boundary conditions gﬁ + k- =0 and ;;7 + o- = 0, respec-
tively.

By Lemma 8. if A ,(p(x,0)A 4+ f(2,0,0)) > 0 where f € F and
@ € G, then the equation

- plr,u)Au = uf(z,u,0)
du

— 4+ Kku =0 on 02
an

has a unique positive solution. Denote this positive solution by ug.
Similarly, if Ay 4(%(2,0)A + ¢g(x,0,0)) > 0 where g € F and v € G,

then
— 2/"(-73* 1))1_’3]“ = I?g(.l,‘,( f 'U)

o .
5:—) +ov = {} on 04}

has a unique positive solution vg.

According to the Lemuma 9, we may define :he operator T': C(Q2) —
C(R2) as follows. For v € C(§2), by Lemma 3, u = Tv is the unique
positive solution to the equation

- (e, u)Au = uf(zr,v,v)
Ju

- + Ku = 0 011 8(2
in

if Ay w(plx,0)A + f{a,0.0)) > 0 where f € F and p € G.

REMARK. By Lemma 9, it is easy to see that T is a continuous
operator and T is strictly monotone. In case that « is a prey for v, T
is decreasing in v.

Replacing v by Tv in the other equation, vie have

— p{r,v)Av = vg(x, To,v)
v {20)

5 +ov =10 on 012
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According to Lemnma 2, we define the operator 4 : C(Q) — C(£) by
considering the equation

(. w)Aw + Pw = vgle, Tv,v) + 7o
Jw (21)
—— tow =0 on Jf.
dn
We denote it by w = Av = (~¢(x, )A - +P ) eglz,Tv,v) + Pv]
where P is constant. Note that the operator A has a fixed point v in
the positive cone K if and only if (Tv,v) is a nonnegative solution of

(1)
THEOREM 1. Assume that (H1)-(H3) hold. If \y s{v(2,0)A 4+

g(z,up,0)) > 0, then A has a positive fixed point in K.

Proof. To show this. we apply Lemma 4. Denot: Ay = 04, If
Ag(vg) = vg. 0 € (0,1}, vy € K, then we have

e i;ji )Avp = Bvgg(c, Trg, ve) + (8 — 1) Pug. (22)

Suppose vg # 0. Let v4(rg) = max,¢qve(x) > 0 for some x4 € €.
Then ¢ must be in 2 by the boundary condition of (21). and at =z,
the left side of {22) is nonnegative and (@ — 1)Puvg(rg) < 0. Thus
we must have g(rg, Tve(xg), ve(ir9)) 22 0. Suppose u, v arc prey and
predator, respectively. Since g(a,Tv,v) < g{a,C},v) m v ¢ K where
glrg, Cy,vg(2g)). Thus by the assumption (H2), vg(ag) < 5. Thus
there is an a prior: bound for the positive fixed poirts of 45. Next
observe A'(0) = (~¢(c.0)A + PY " Ygl(a,ue,0) + P1 by Lemma 7,
where (—y:(r,0)A + P71 is a lnear operator under boundary con-
dition g—n + o= 0. Smce Ay o((x,0)A + g{x,ug,0)) > 0, Lemma 6
implies r(A"(0)) > 1. Note that 4 is strongly positive compact opera-
tor from C($2) to C'(€2) by Lemma 2. Thus 4 has a positive fixed point
vin K by Lemums 4.

THEOREM 2. Suppose the conditions (H1)-(H3) held.
(a) If Xy (o{e.0)A + f(2,0,0)) <0, then (1) has ro positive solu-
tion.
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(b) Suppose Ay o(4(x,0)A + ¢(x,0,0)) > 0. (therefore there exists
a solution (0,v9) with vy > 0.) Then the svstem (1) has a positive
solution if and only if A; (o(z,0)A + f(z,0,v9)) >

{c) Suppose Ay ,(¢(x,0)A+g(z,0,0)) < 0. Then the system (1) has
a positive solution if aud only if A\ x(¢(2,0).A + f(,0,0)) > 0 (thus
there must be a solution (uq,0) with ug > 0) and A o((r.0)A +
9(x,up,0)) >0

Proof. (a) Suppose (u,v) is a positive solation of the system (1).
Then @ # 0 and (@(, w)A+ fir,4,0))a = 0. As in the proof of Lemma
8 ( ii Lemma 1 and Lemma 3 implies A, (p(x,0)A + f(r,0,0)) >
Mwlp(e, u)A + flz,1,0)) > Ay (@(z,@)A + f(r.u.©)) =0, a contra-
diction. Thus the system has no positive solu-iomw.

(b) (==) Since Ay g(w(z, 00N+ g(x,20.0)) > X L(¥(x,0)A +g(ir, 0,
0)) > 0,4 has a positive fixed point v in K by Theorem 1. Note
that v = Tv > 0 because if Tv = 0. then by uniqueness, vy = .
But Ay o (@la, 0)A + f(r,0,v03) > 0 implies Tv = Tvg > 0, a con-
tradiction. Therefore (Tv,v) is a positive solation of the system (1).
(==) Let (u,v) be the positive solution of (1). Since g(z,u,v) >
g(x.0,v), we have —y(7,v9)Avy < vog(x,u,19). So vy is a lower so-
lution of —¢(x.v)Av = wvg(r,u,v}. Thus vo < . So we haw 0=
Moelple, WA+ fle,uv)) < A (ola, 0)A + (z,0, 0)) < A x(p(x,0)
A+ f{z,0,v9)). Therefore A\ o (@(x.0)A + f(r,0,16)) > 0.

(¢) Agdm, sinee Ay o (U, 0)A + gz, ug, 0)) > 0, there exists a fixed
point v of 4 by Theorem 1. Then u = Thv > O since if Tv = 0,
then v = w»g. Thus, by using Lemma 1 aad Lemma 3, we have
0 = Miolv(a,0)A + g(r,0,0)) < A o(0(2,O)A + ¢(2,0,0)) < 0, a
contradiction. For the necessity, let v be a I)()b‘tl\’t‘ solution with v = v
of the system (1). If v = 0, then u = ug. If v > 0, then uy > u by
the monotonicity of T. (See Remark.) Thus we have ug > u > 0.
I A kl@(2,0)A + f(2,0,0)) < 0, we have a contradiction by (a). If
Mo (92,018 + (g, 0)) < 0, then 0= Ay o(y(r, €)A + gl 1)) <
Aoz, 0) + g{r,1,0)) < Xy ,(¥(x, 0) 4 glz, 19,01) <0, a contradic-

tion again.
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