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THE GROUP OF UNITS IN A LEFT ARTINIAN RING
JUNCHEOL HAN

Let R be a left Artinian ring with identity 1 and let G be the group
of units of R. It is shown that if G is finite, then R is finite. It is also
shown that if 2.1 is a unit in R, then G is abelian if and only if R is
commutative.

1. Introduction and basic definitions

An element « in R is said to be left quasi-regular if there exists
7 € R such that » + a + ra = 0. In this case, the element r is called
a left quasi-inverse of a. A (right, left or two-sided) ideal I of R is
said to be left quasi-regular if every element of I is left quasi-regular.
Similarly, @ € R is said to be right quasi-regular if there exists r € R
such that a + r + ar = 0. Right quasi-inverse and right quasi-regular
ideals are defined analogously. It is clear that if R has an identity 1,
then a is left [resp. right] quasi-regular if and only if 1 + a is left {resp.
right] invertible. The Jacobson radical J of R is defined by the left
quasi-regular left ideal which contains every lefi quasi-regular left ideal
of R. A ring R is said to be semisimple if its Jacobson radical J is zero.
We note that R/J is semisimple.

In {2], Wedderburn-Artin have shown that if R is a semisimple left
Artinian ring, then R is isomorphic to a direct sum of a finite number
of simple rings. Hence we obtain the following:

THEOREM 1.1. If R is a left Artinian ring with identity, then R/J =
@, M(D;) where M;(D;) is the set of all the n; x n,; matrices over a
division ring D; for each i = 1,2,--- ,n and for some a positive integer
n.

Proof. See [2, Theorem 2.14, p.431 and Theorem 3.3, p.435].
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2. Properties of R when G is finite and abelian

In this section, we shall denote G by the group of units of R and
denote J by the Jacobson radical of R.
We begin with the following lemma:

LEMMA 2.1. Let R be a ring, and let G* be the group of units of
R/J. Then g € G if and only if g + J € G*.

Proof. (=) Clear.

(<) Suppose that ¢g* = g+J € G*. Then there exists hi* = h+J € G*
such that ¢*h* = h*¢* = 1* where 1* is the identity of G*. So 1-hg € J.
By the definition of J,14.J C G and so gh and hg € &. It is clear that
g€ G.

LEMMA 2.2. Let R be a ring with identity. Then a € R is left
quasi-regular if and only if a + J € R/J is left quasi-regular.

Proof. It follows easily from Lemma 2.1.

THEOREM 2.3. Let R be a left Artinian ring with identity 1. If G
is finite group, then R is finite.

Proof. By Theorem 1.1, R/J = @&, Mi(D;) where M;(D;) is the set
of all the n; x n; matrices over a division ring D; foreach: = 1,2,.-. |n
and for some a positive integer n. If G is finite, then by Lemma 2.1,
G*, the group of units of R/J, is also finite. Then D; i1s finite for
each t = 1,2, -+ ,n. Indeed, suppose that D, is infinite for some 7. For
simplicity of notation, we can assume R/J = &, M;(D;). Consider a
subset GT = @®f; H; where H; = {¢;},(e; is the identity of M;(D;)
for j #£ 1 and H; = {(as) € M{(D;) : a;1 € Di\{0.},a,s = €; (2 <
s < ny)yag = 0; (2 < s,t<ny,s#t)and o; (resp. €;) is zero (resp.
identity) of D;}. Then G? is a subgroup of G* and |G}| = |D;\{0;}] is
infinite, which contradicts to the fact that G* is finite group. Hence D;
is finite for each i = 1,2,--- ,n, and so R/J is finite. Since 1 +J C G
and G is finite, J is finite. Hence |R| = |J| - |R/J| is ‘nite.

LEMMA 2.4. Let R be a ring with identity and let G be the group of
units of R. If G is abelian group and a and b are quasi-regular elements
of R, then ab = ba. In particular, J is commutative.
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Proof. Since 14+ J C Gandaand b€ J (14+a)(l1+b) =(1+
b)(1 + a). Hence ab = ba. Since each element of .J is quasi-regular, J is
commutative.

REMARK. In Theorem 2.3, the condition that R has identity is nec-
essary because p-Priifer ring Z(p™) is infinite Artinian ring without
identity which has no units.

LEMMA 2.5. Let R be a left Artinian ring with identity. If G is
abelian group, then R/J = &7, F, where F. is a field for each 1 =
1,2, ,n and for some positive integer n.

Proof. By Theorem 1.1, R/J = 3T, M,(D;) where M,(D;) is the set
of all the n; x n; matrices over a division ring D, foreach ¢ = 1,2,--- ,n
and for some a positive integer n. First, we will show that each D; is a
field. Consider the subgroup G¥ = &7, H; of G* given in the proof of
Lemma 2.4. Since G* is abelian, H; is also abelian, and so D, is abelian,
that is, D, is fleld. Let D; = F, . Next, we will show that n; = 1 for each
. Assume that n; > 2 for some i. Consider two elements a = (a,)
and b = (by) in M;(F;) where if s = t, a1, = a4y = ¢,, otherwise
ast = 0y, and if s = ¢, by; = by = 1;, otherwise by, = 0;. By the simple
calculation, we have (1, 1)-entry of ab = 2 # 1 = (1, 1)-entry of ba. Thus
the group of units in M;(F;) is not abelian, and so G* is not abelian
group, which is a contradiction. Hence we have the result.

Let R be a left Artinian ring with identity such that G is abelian
group. By Lemma 2.5, R/J = &2 | F; where F} is field for each i(1 <
¢ < n) and for some positive integer n. For simplicity of notation, we
can assume that R/J = @ | F;. Let ¢ : R — R/J denote the canonical
epimorphism and for ecah 4, let R; = ¢7'(&]L; H,) where H, = {0;} (0,
1s additive identity of F;) for j # : and H; = F}. Let ¢; = ¢|p,. Then
Ker ¢; = {a € R; : IIi(¢4(a)) = 0;} where II; is the projection of &:F;
to F. Note that Ker ¢; = J for each 7 = 1,2,--- ,n and each R; is
an ideal of R. If 1; is the identity of F;, let 1* denote the identity of
¢; = @i H;, that is, 17 = &7 a; where a; = 9; for j # ¢ and a; = 1,.
Observe that ¢;'({1}}) is contained in the center of R; if and only if
#7'({~12}) is contained in the center of R;.
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LEMMA 2.6. Let ¢ : R — R' be a ring epimorphism. If A and B are
subsets of R', then ¢ (A + B) = ¢ 1(A) + ¢~ (B).

Proof. If r € $"'(A+ B), then é(z) = a+ b € A+ B. Since ¢ is
onto, there exist ax € A and b+ € B such that ¢(a*) = a and ¢(b*) = b.
So 6(x) = a + b= d(ax) + 6(bx) = dlax +br) € 46 (A) + 6~ '(B)).
Hence r € ¢7'(A) + ¢~ 1(B).

If £ € g7 (A) + ¢~ (B), then = a * +bx where ax € ¢"'(A) and
bx € ¢71(B). So ¢(z) = éla x +bx) = ¢(ax) + ¢(bx) € A+ B. Hence
z € ¢ A+ B).

LEMMA 2.7. If R is a left Artinian ring with identity, then R =
Ri+ Ry + - + R, where R; = ¢~ (3™, H;) with H; = {0;} (0; is
additive identity of F}) for j # ¢ and H; = F;.

Proof. Let F* = @ H, for each :. Then ®]_, F; = F}'+F7 +---+
F* Hence R=¢"'0¢(R) = ¢ Y (R/J) = ¢~ (®F;) = ¢~ H(F + F +
e+ Fr) = qS“l(F]*)+¢‘1(F2*)-+----+¢—1(F,’;) =R,+R;+---+R,
by Lemma 2.6.

LEMMA 2.8. Let R be a ring with identity such that G is abelian
group and R/J = & | F; where each F; is field. If o7 ({11} C

Z(R;) (= center of R;), then R; is commutative.

Proof. Since R; is an ideal of R, if a € R;, then a is quasi-regular in
R; if and only if a is quasi-regular in R. Hence by Lemma 2.2, if a € R;,
then a is quasi-regular in R; if and only if ¢(a) is quasi-regular in R/J,
that is , ¢;(a) is quasi-regular in F} = &%, H; where H; = {0} for
j # i and H; = F;. Hence for a € R;, a is quasi-regular if and only if
i(¢i(a)) + 1: # 0.

Now let a,b € R;. If a and b are quasi-regular, then ab = ba by
Lemma 2.4. If a is not quasi-regular, then II;(¢;(a)) -+ 1; = 0y, that is,
a € ¢7'({=11}). Thus a is in the center of R; and so ab = ba. Similarly,
if b is not quasi-regular, then ab = ba.

LEMMA 2.9. Let R be a ring with identity such that G is abelian
group and R/J = @I ,F; where each F; is field. If o7 ({1} C
Z(R;) (= center of R;) for all i = 1,2,--- ,n, then R is commutative.

Proof. Let a € R, and b€ R; for i # j (1 <1, j <n). By Lemma
2.7, it suffices to show that ab = ba. By Lemma 2.4, we may assume
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that both a and b are not quasi-regular. Without loss of generality,
we may assume that a is not quasi-regular. Then II;(¢;(a)) = —
Since ab = ba if and only if (—a)b = b(—a), we may assume that
IIi(¢i(a)) = 1;. Now ab,ba € R,NR; since R; ar.d R; are ideals of R. But
fore # j, RiNR; = J. So ab,ba € J. Since J C Z(R;) for each ¢, ab and
ba are in Z(R;) for each 7. Hence a(ab) = (ab)a = a(ba) = (ba)a, that is

a?b = ba?. Since I1;(¢i(a*—a)) = 0;, a?—a € .J. So (a®—a) = b(a®—a).
Hence —ab = —ba, that is, ab = ba.

LEMMA 2.10. Let R be a ring with identitv such that G is abelian
group and R/J = @&l F; where each F; is field. If char (F;) # 2 for
some 1, then d):l(v{l;“}) C Z(R;) (= center of R;).

Proof. Since char (F;) # 2 for some i, 1, # —1,. For any u; €
Fi\{0;, —1;}, there exists w)i € F;\{0;,~1;} such that u; - w; = 1;.
So w; +1; # 0; and u; + 1; # 0;, and hence u; and w; are quasi-
regular elements of F;. Let u = (0y,---,0;_y, u;,0;41, --,0,) and
w=(0-1,---,0,-1,w;,0i41, -+ ,05). Then u and w are quasi-regular
in ©H; where H; = {0,} for j # ¢ and H; = F.. Since ¢; is onto, there
exist a,b and e € R, such that ¢;(a) = u, ¢;(b) = w and ¢;(e) = 1;.
Then II;(¢;(e —ab) = II;(1 —uw) = 0;, so e —ab € Ker ¢; = J. Note that
a and b are quasi-regular in R if and only if ¢(a) and ¢(b) are quasi-
regular in R/J. Let = be arbitrary element of R;. If z is quasi-regular,
then by Lemma 2.4, z(e — ab) = (e — ab)x since ¢ — ab € J. Hence
re — zab = exr — abx. Since a and b are qasi-regular, rab = abz. Thus
xre = ex. If z is not quasi regular, then IT,(¢:(#)) = —1, = H;(¢:(—~¢€)).
Sor+eé€& Kerd, =J Thus z + e = j for some j € J. Smce}u
quasi-regular in R;,e¢j = je. So xe = (j —e)e = je — % = ¢j — % =

e(j —e) = ex. Thus ¢7'({1F}) C Z(R,).

THEOREM 2.11. Let R be a left Artinian ring with identity 1 such
that 2 = 2 -1 is a unit in R. Then G is abelian if and only if R is
commutative.

Proof. («) Clear.

(=) Suppose that G is abelian. Then R/J = @ | F; where F; is
a field for each ¢ = 1,2,--- ,n and for some positive integer n. For
simplicity of notation, we can assume that R/J = & F,. Since 2 is
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unit in R, then 2+ J is unit in R/J by Lemma 2.1. So char(F;) # 2 for
each 1 = 1,2,--. ,n. Therefore, the theorem follows from Lemma 2.6,
Lemma 2.9 and Lemma 2.10.

REMARK. In Theorem 2.11, the condition that 2 is a unit in R is
essential, since the ring R of upper triangular 2 x 2 matrices over Z; is
not commutative but the group of units of R is abelian.

COROLLARY 2.12. Let R be a left Artinian ring with identity 1 such
that 2 = 2-1isaunit in R. If G is cyclic, then R is a finite commutative
ring.

Proof. 1f G is cyclic, G is abelian. So by Theorem 2.11 R is commu-
tative. Moreover, if G is cyclic, then R is finite. [See [3]]
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