무지개 송어(Oncorhynchus mykiss) 중추신경계(CNS)에 있어서 세포특징과 Nitric Oxide Synthase

장선일. 최민순*. 김영길*
전북대학표 자연과학대학 생물학솨. *i노산대학꾜 해양산업대학 수족병리학봐

Abstract

최근 포유동물에서 nitric oxide(NO)는 중추신경계(CNS)의 기능에 있어서 매우 중요한 역할을 하는 것으로 알려져왔다. NO는 NO synthase(NOS) 에 의혜 L-arginine으로부터 합성된다. 본 연구에서 저자 등은 무지개송어(Oncorhynchus mykiss)의 CNS에서 NOS활성을 측정했고, 소교세포와 신경교성상 세포 및 희돌기교세포의 특징을 기술하였다. CNS에서 세교세포는 포유동물에서와 유사한 큰 소교세포(large microglia: LM)와 세포질이 매우 적은 소형 소교세포(small microglia: SM)등 2가지 형태적 특징이 관찰되었다. CNS 에서 신경교성상 세포는 모세섬유가 연결되지 않은 망상 구조의 형톄를 보였고, 희돌기 교세포는 신경교성상세포보다 더 세포질이 밀집되이 있었다. 저자등은 무지개송어의 CNS에서 NOS의 활성울 측정하였는데, 그 양은 $1.04 \pm 0.12 \mathrm{pg} / \mathrm{min} / \mathrm{mq}$ 이었고, $\mathrm{N}^{\mathrm{C}} \mathrm{MMA}$ 와 EGTA 에 의해 가역적 또는 비 가역적으로 억제되었다. 이들의 결과는 CNS 에서 L-argine으로부터 NO 형성이 calcium에 의존적이고, 초기 진화 기원의 경로를 시사해 주었다.

Key Words : Microglia, astrocytes, oligodendrocytes, CNS, nitric oxide synthase

포유동물에서 소교세포(microglia)는 중추신겅계(crntral nervous system: CNS) 내애서 세균을 비롯한 이 물질을 퇴치하고 탐식할 수 있눈 체세포 조직 (somatic tissues) 내의 탐식세포로서 알ㄹㅕㅕㅕㅆ으며(Fishman and Savitt. 1989 ; Frei et al., 1986). CNS의 발생과 더불어 세포릉식과 분화가 이루어져 신경교성상세포 (astrocytes)를 자곡할 수 있는 여러가지 세포활성물질(cytokines) 과 주조직적합항원 클라스 I 및 II (major histocompatibility complex class I and II: MHC class I, II) 발현율 유도할 수 있고(Fierz et al, 1985; Akiyama et al., 1988: Righi et al., 1989). 세포질내에 비툭이적 estrase와 5^{\prime} - nucleotide의 존재로 단핵탐식세포계 (mononuclear phagocytic system: MPS)와 생화학적으로 유사한 점이 보고되었다(Kaur et al., 1984 : Ling et all, 1982). 하등척추동물에서 CNS의 발생과 분화는 포유동 물에서와 달리 성장 시 기에 이르기꽈지 이루어질 수 있

다는 점메서 소표세포의 증식 띷 성장은 매우 홍미로운 일이지만. 이들 세포의 형태적인 톡징교 기능에 대해서 는 거의 알러진 바 없다(Magys and Scholes. 1990) Dowding et al., 1991).
Nitric oxide(NO) 는 nitric oxide syntase(NOS)에 의 해 L-arginine으로부터 합성되는 paracrine 및 autocrine 방식에 여해 베포로부터 생산되는 산화물질의 일종이며 (Moncada et al., 1989 : Hibbs et al., 1990). NOS는 ? 가지 기전에 의해 조절되는데 내피세포(endothelium)와 소놔세포 (cerchellum) 에서 존 ㅐㅎㅎㄴㄴㄴㄴ 캘모둘린 (calmodulin)과 캘시움 $\left(\mathrm{Ca}^{2} \cdot\right)$ 에 의존적인 갓과 MPS에서 발 현되는 켈시움에 비의존적인 것으로 대별된다(Bredt and snyder, 1990 : Hiki et al. 1991), 되에서 NOS는 대뇌피질(celebral cortex), hippocampu, 및 corpus stratum등 조직세포에서 출현되고(MacMiking et al., 19 92). 소녀 신경세포의 가립성 셔포(granule cells) 및 성

상세포(basket cells)에서도 존재하는데, ㄱ⼯것은 NADPH diaporase로 동정되었다(Hope et al., 1991). 이와 같이 CNS의 여러 세포 내에서 NOS 존재는 NO가 신셩 조절자로서의 역할을 제시해 주고 있다 (Bredt and Snyder. 1992).

진화적인 측면에서 NO 시스템은 거의 알려진 바 없 지만. 파충류(Regidor and Poch. 1988)와 양서류(Sato. 1990)에서도 존재함이 보고되었으며. 최근에 무지개송어 (rainbow trout)에서도 조직학적으로 NOS 가 존재함을 보고하였다(Schober et al, 1993).
본 실험에서는 부지개송어(Oncorhunchus mykiss) 뇌소 직 세포의 전자 현미경적 구조와 뇌조직에서의 NOS 할 성도를 citrulline assay 방법으로 조사한 바 훙미로운 결과를 얻었기에 이를 보고하는 바이다.

재료 및 방법

1. 실혐동물

실혐어류는 무지개솧어(Oncorhynchus mykiss)로 2~3 개월된 치어(전장 $5 \sim 7 \mathrm{~cm}$)를 암수 구별없이 50 여 마리를 사용하였다. 이들 치어는 순환 수조내예서 수온이 1~ 14 C 되게 하고 펠헷 사료(Ewo. Lid. Bathgate. U.K)를 섭식시키면서 가능한 한 스트례스를 주지 않도록 하여 유지하였다.

2. 뇌조직표본과 전자현미경 관찰

뇌조직과 세포는 0.1 M 인산완충용액 (phosphate buffered saline; pH 7.4)에 용해시킨 4% glutaraldehyde로 2시간 동안 고정한 후 0.1 M 인산왕충용액으로 세척하여 1% osmium tetroxide(pH 7.4)에 고정시키고 epon 수 지로 봉입하였다(Maggs and Chchales. 1991). 봉입된 block은 ultramicrotome으로 $1 \mu \mathrm{~m}$ 와 50 nm 의 두애로 잘 라 $1 \mu \mathrm{~m}$ 의 조직 절편은 toluidine blue로 염색하여 광학 현미겸 하에서 관찰하였으며. 50 nm 의 절편은 alcoholic uronyl acetate와 Reynolds lead citrate로 염낵하여 투 사 전자현미경 (Zeiss EM 10 C)으로 뇌조직 세포를 관

찰하였다.

3. 뇌조직 세포

뇌조직내의 혈맥의 오염을 방지하기 위하여 아가미 혈관을 절단한 다음 충분히 출혈시키고 70% ethanol에 두부를 2분긴 침지시킨 후 녀조직이 손상되지 않도록 주의하여 뇌조직을 적출하였다. 적출된 뇌조직을 Hanks' balanced salt solution(HBSS, pH 7.2)이 들어있는 petridish로 옮긴 다음 그 조직을 살게 세절하여 세포부유 액을 준비하였다. 세포부유액은 100 과 $30 \mu \mathrm{~m}$ 의 nylon mesh을 이용하여 차례로 통과시킨 후 300 g 로 10 분간 4 C에서 원심시켰다. 침 전된 세포든 2 mM glutamine. 1% antibiotics(penicillin平 streptomycin) 몿 10% letal calf serum(FCS. Sigma) 등이 포함되어 있는 $\mathrm{L}-15 \mathrm{me}-$ dium에 다시 부유시켜 $1 \times 10^{\circ}$ cells/ml로 적정한 후 Wilson과 Brophy (1989)의 방법에 따라 poly-D-lysine으 로 전처리 된 조직배양용기(Gibco-Nunc Ltd. Paisley. U. K) 로 옮겨 접종한 다음 습기가 충분한 배양기 (20 C$)$ 에 서 배양하였다. 접종 4 일 후 부유된 세포를 제거하기 위 혜서 HBSS로 셰번 씻온 다음 부착된 세포를 얻어서 400 (9로 원심 침전시킨 후 광학현미경 및 전자현미경 관찰에 사용하였다.

뇌조직 및 세포 효소액

Homogenisation buffer $(10 \mathrm{mM}$ HEPES. 0.2 M sucrose. 1 mM dithioerythritol. $10 \mu \mathrm{~g} / \mathrm{m} /$ soybean trypsin. \cdots (foug $/ \mathrm{ml}$ leuperin. $2 \mu \mathrm{~g} / \mathrm{ml}$ apatinin: pH 7.2. Sigma) 에 뇌조직을 옮겨 0 C에서 30 촌ㄴ sonication을 하여 뇌조 직 호소액둘 준비하였고. 말초혈액 백혈구. head kidney leucocytes. liver cells 등은 $1 \times 10^{\circ}$ cells $/ m$ 노 적정한 후 homogenisation buffer에 부유시벼 -70 C 고속 냉동기 에 5 분간 동결시킨 후 다시 녹인 다음 동결시키는 등 3 번 반복해 세포 효소액을 준비하였다. 모든 시료는 Eppendorf tuhe에 옮긴 후 13.0001 rpm 으로 원심시켝 상층액 만을 취하여 citrulline assay에 사용하였다.

Citrulline assay

NOS활성은 Bredt 등(199(0)) 의 방법에 따라 ${ }^{\circ} \mathrm{C}$ arginc에서 ${ }^{14} \mathrm{C}$ citrulline으로 전환되 양을 촉점하였다. 사 랴하헤 기술하면. $25 \mu k$ 의 조직 및 세포 효소액을 50 mM
$\mathrm{KH} . \mathrm{PO} .6 .60 \mathrm{mM}$ L-valine. 1.2 mM L-citrulline. L-arginine. $25 \mu \ell{ }^{15} \mathrm{C}$ L-arginine (106 mm stock solution). 1.2 mM MgCl .10 .24 mM CaCl . I $20 \mu \mathrm{M}$ NADPH. $10 \mu \mathrm{M}$ tetrahydrobiopterin. $25 \mu \mathrm{M} \mathrm{FAD}$ (Sigma) 등 기질액에 수의하여 질 서1은 다음 느 C에서 45 분안 빵치하였다. 그 후․ 활성화된 Imध Dowex AG 50WX-8(Na form: Bio Rad Richmond. C.A.) 률 간 whe애 매우 주의닌게 첨 가시킨 훈 니사ㄴㅏㅗㅇ안 땅치한 다욲 13000 pmo으로 DoHex $\mathrm{AG} 50 \mathrm{WX}-8$ 운 침선시킨 후 상층액반을 취하여 ${ }^{1+C}$ citrulline양을 liquid scinillation counter로 측정하 어 분당 DPM 값으롤 계산하고. 보든 시료의 단백 질랑은 Bradfordi 1976) 방법에 따라 정량하고 분당 및 단백 질 mu당 NOS양을 환산하였다.

결과 및 고찰

최: 이난유 비롯한 포유동물에서 신경과학(neuroscience)에 대한 관신도가 높아짐에 따라 CNS를 구성하 고 있는 신경네포외의 여러 새포들의 구조. 가능 및 역 한에 대한 배로운 사실이 빦이 밝혀지포 있다. 과거에는 뎌조직에 맆프관이 분포되어 있지 않고 뇌조직이 혈관과 hlood brain barrier(BBB)를 사이에 두도 있기 때논에 돠는 번억 반ㅇㅇㅇㅍ千 마관한 기판으로 간주외어 왔었다. :1 러나 최픈의 연구 결퐈에 의하면 다를 조직에서 대식세 포가 MPS를 구성하듯 신경표서포 (glial cells)가 뇌조직 예서 MPS폐의 네포로서 손천적 면역반응에 관어함이 밝혀지고 있다 (Fishman and Savitt. 1989 ; Frei et al, 1986).

Glial fibrillary acidic protin(GFAP)률 항유하는 신 경표성상세포느 항웡을 T 세포에 전달할 수 있고 주조닉 적합항원 롤라스 II 의 단빽 질이 발현되머. interleukin-

1985 : Frei et al., 1986). 이와는 달리 되조직 내의. 소교 세포예만 주조직 적합항원 클라스 I 및 II 항원들이 발현된단: 보고(Akiyama et al, 1988) 들이 있을 뿐만 아니라 소쑈세푠는: IL-1. IL-6 6 핓 tumor necrosis fac$\operatorname{tor}(\mathrm{TNF})$ 등을 분비한다기 여려 보고가 있다(Giulian et al, 1986 : Righi et al., 1989). 또한 소교세포는 표면에 변여 글로부린의 FC 부분에 대한 수용체가 존재하고 MPS계의 탂식세포률 자곡할 수 있는 물질에 대하여 비 숫한 반응 양태률 보임이 알려져 와서 뇌조직에서 신경 표세포둘로 불리우누 네포충애 면역계의 항원 전달(antigen presentation) 기능과 뇌조식에서 국부적인 선천적 면역반응(local innate immunity)을 수행할 수 있는 세 포사 존재함이 확실시뎌고 있다.
포유동물에서와는 달리 하당쳑추둥물에서의 뇌조직울 구성하는 세포의 형태적 구조. 기능 및 역할에 대해서는 거의 알녀진 바 없다. 따라서 본 연구에서는 무지개송어 치어를 대상으로 뇌조직 세포중 미세 형태학적인 특징을 조사한 바 Fig. 1에서 나타낸 바와 같다. 무지개송어의 녀조직 세포는: 우선 표유동물에서 존재하는 신경교성상 새포. 흭놀이세포(oligodendrocyles) 및 소표세포가 존재 함을 알 수 있었다.
소표네포 (Fig. 1, $\mathrm{A}-\mathrm{C}$) 는 신셩교성상세포와 희돌기 iㅛ세포 등 뇌조직 서포들에 의해 둘러쌓여져 있고. 세포 학적 톡징이 포유동물에서와 유사한 접이 관찰된 바 핵 (nucleus)의 크이에 비해 세포질이 현저히 적게 관찰되 었다. :ㄴㄹㄹㄴㅏ 포듀동물에서와 닽리 나지개송어의 소꾜세 포는 형태저으로 많은 차이점이 관찰되었는데 그 하나는 크기가 매우 작고 둥ㄴㄴ 소혛 소표세포(small microglial: SM) 와 다륜 하나는 신경교성상세포와 희돌기교세 포보다는 작지딴 SM보다 큰 대형 소표세포(Large microglial : LM)가 존채함을 알 수 있었고. 분화적 특징에 있어서도 포유동물에서 알려진 소교세폰보다 매우 덜 분화되어 있었다.
저자등은 부지개송어에서도 포유농물예서와 같이 소 표세포만을 배양할 수 있도 기능에 있어서도 유사한 점 이 발견되느지를 관찰하기 위혜 Fig. 2에서와 같이 배양

Fig. L. Cells of rambow trout brain. A. Small microglial SM) and large microglia(LM) × $1.5(9)$. B. Small microglia and astrocyte. \times 12.001. C. Large microglia. \times 12.1月). D. Oligodendrocyte. $\times 12.000$. MA: Myelinated axon.

된 세포에서 세포학적 미세구조를 관찰하였다. 뇌조지애 서도 관찰한 바와 샅이 배양된 뇌세포에서는 샅은 둑싱 을 관찰할 수 있었으내. 세포 배양 조건은 확립할 수 없 었다(Fig. 2. A). 세포 배양 용기예 부착된 네포에서 소 교세포를 관찰한 바 뇌조직에서 나티나는 SM형과 LM 형이 동시에 출현되는 것을 알 수 있었다. 또한 멏몇쎄 포에서는 포유동물의 뇌세포에서 볼 수 있는 활성세포를 관찰할 수 있었는데 이 소고세포는 아메바형 세포로 동 정할 수 있었다(Fig. 2. D). 따라서 틸라피아(Oreochromis spilurus) 의 (NS에서 관챂된 것과 비숫하였다($\mathrm{DO}_{0}-$ wding at al., 1991).

신경표성상세포는 소표세포의 크기가 켰으며 핵의 형

태는 분명하지 않으나 다량의 세포질을 함유하고 있었
 D 에서 보는 바와 반이 불가칙적인 흔 핵을 가지고 있었 ㅍ. 주의에 myelinated axons: 가지고 있어서 포유동물 에서 나타나는: 툰징롸 유사하였나. 이와같이 누지개송어 에서도 최소한 뇌조식에서의 뗘역반응으 일으킬 수 있눈 소표세파와 신겅표성상세포가 존재함을 알 수 있어서 II 기등애 대한 역할이 매우 주노된나.

따라서 본 연고에어는 니 기능울 알아보기 위해서 NOS 활성을 뇌조직에서 측정한 바 때우 훙미로운 사실 을 날은할 수 있었다. NOS는 흔히 ㅐㅐ채내의 너포의 종 휴에 따라시 특징이 다른데. 우선 뇌조직에서 발건되는

Fig. 2. Cultured cells from rainhow trout brain cells. A. Microglia(M) and astrocyte(A) $\times 1.200$. B. Microglia. $\times 15,000$. C. Small microglia (SM) and large microglia(LM). $\times 10,000$. D. Activated microglia. $\times 10.000$.

캘시움에 의존적인 것과 (Hiki et al, 1991). interferon-r(IFN-r)와 lipopolysaccharides(LPS) 혹은 tumor necrosis factor(TNF) 등의 연놰적 자극에 의해 NOS가 발 현되어 NO를 생성한다고 알려겼다(Stuehr and Marletta. 1987). 저자등은 말초 백혈구 (peripheral blood leucocytes: PBLS). 간(liver) 및 head kidney leucocytes (HKL) 에서 NOS 활성을 조사하였으나 매우 적은 양을 관찰할 수 있었다(Fig. 3), 그러나 뇌조직에서는 1.04 ± 0. $12 \mathrm{pg} / \mathrm{min} / \mathrm{mq}$ 으로 현저히 높은 NOS 활성을 관찰할 수 있었다(Fig. 3). 또한 NO가 L-arginine과 캘시움에 의 존적인지 알아보기 위해서 L-arginine의 inhibitor인 $\mathrm{N}^{\prime \prime}$ -monomethyl-L-arginine monohydrate($\mathrm{N}^{\mathrm{N}} \mathrm{MMA}$) 와 캘

시움 inhibitor인 EGTA(ethylene glycol bis(β-aminoethyl ether) $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime} . \mathrm{N}^{\prime}$-tetraacetic acid) 을 첨가하여 NOS 활성을 측정한 바 유의성 있는 $(\mathbf{P}<0.05, \mathbf{P}<0.01)$ 결과를 얻었다.
따라서 본 연구의 결과는 Schober 등(1993)이 부지개 송어의 뇌조직애서 NADPH-diaphorase의 출현 결과와 유사하여 분명히 무지개송어의 뇌조직세포에서는 NO 생성과 관련된 세포가 있는 것으로 사료되며. 진화적 측 면에서 NOS 유전자의 존재와 발현은 하등척추동물에서 이미 존재되어 수렵 진화된 것으로 추정된다.

한켠 무지개송어의 시험관 내 탐식세포예서는 NOS 활섬도 축정에는 실패하였다. 족. 저자등은 Graham과

Fig. 3. Calcium dependence of nitric oxide synthase (NOS). Enzyme fractions obtained from peripheral blood leucocytes(PBLS), head kidney leucocytes(HKLS). liver. and brain. The enzyme activity was expressed as pmoles $/ \mathrm{min} / \mathrm{ml}$ protein in each fraction. Data were mean \pm SE of 3 separate experiments.

Secombes(1988)의 방법에 따라 head kidney leucocyles에 ConA와 PMA를 자도한 다욲 48시간 배양 후 macrophage activating factor(MAF)를 춰하여 여기에 human recombinant TNF $-\alpha$ 및 LPS. PMA, calcium ionophore 23187 등 여러가지 물질로 자독해 NO 생성을 유도하였으나 실패하였다. 따라서 무지개송어의 탐식세 포에서의 NO 생성은 좀 다 복잡한 레포 활성 물질이 필요한 것으로 사료되머. 생체내에 어류의 병원채를 감 염시커 NO 생성에 대한 실험적 관찰이 요망된다. 또한 뇌세포에 있어서도 소표세포 및 신경교성상세포 등을 순수 분리해 배양할 수 있는 배양 조건이 선행되어야 신경계내 면역세포의 기능 및 역할에 대해서 좀 더 확 실해질 겆으로 사료된다.

참 고 문 헌

Akiyama, H., S. Itagaki and P. L. McGeer : Major histocompatibility complex antigen expression on
rat microglia following epidurol kainic acid lesions. J. Neuroxci. Res. $20: 147 \sim 157.1988$.

Bradford, M. : A rapid and sensilive method for the quantitation of microgrm quantities of protein using the principle of protein-dye binding. Anal. Biochem. $72: 248 \sim 254.1976$.

Bredt, D. S. and S. H. Snyder : Nitric oxide, a novel neuronal messenger. Neuron $8: 3 \sim 11.1992$.
Bredt. D. S. and S. H. Snyder : Isolation of nitric oxide synthetase. a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA. 87 : 682~685. 1990.
Dowding, A. J., A. Maggs and J. Scholes : Diversity amongst the microglia in growing and regenerating fish CNS: Immunohistochemical characterization using FL. I. anti macrophage monoclonal antihody. Glia 4 : 345~364. 1491.

Fierz, W., B. Endler, K. Reske, H. Wekerle and A. Fontana : Astrocytes as antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation. J. Immunol. 134:38 75~3881. 1985.
Fishman, P. S. and J. M. Savitt : Selective localization by neuroglia of immunoglia of immunoglobulin G in normal mice. J. Neuropathol. Exp. Neurol. $48: 212 \sim 32(145 \%$
Frei, K.. S. Bodmer, C. Schwerdel and A. Fontana: Astrocyte-derived interleukin-3 as a growth factor for microglia cells and peritoneal macrophages. J. Immunol. 137 : 352I~3527. 1986.
Graham, S. and C. J. Secombes: The production of a macrophage - activating factor from rainbow trout Salmo gairdneri leucocytes. Immunology 65 : 293~ 297. 1988.

Hiki, K., Y. Yui, R. Hattori, H. Eizawa, K. Kosuga and C. Kawai: Three regulation mechanisms of nitric oxide sy nthase. European J. Pharmacology Molecular pharmacology Section. 206:163~164.
1991.

Hope, B. T., G. J. Michael, K. M. Knigge and S. R. Vincont : Neuronal NADPH-diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. USA, 88 : 2811~2814. 1991.
Kaur, C., E. A. Ling and W. C. Wong : Cytochemical location of 5° - nucleotidase in amoeboid microglial cells in postnatal rats. J. Anat. $139: 1 \sim 7.19$ 84.

Ling, E. A., C. Kaur and W. C. Wong : Light and electron microscopic demonstration of non-specific esterase in amoeboid microglial cells in corpus callosum in postnatal rats: A cytochemical link : monocytes. J. Anat. $135: 385 \sim 394.1982$
MacMicking, J. D., D. Q. Willenborg, M. J. Weidemann, K. A. Rockett and W. B. Cowden : Elevated secretion of reactive nitrogen and oxygen inermediates by inflammatory leukocyes in hyperacute experimental autoimmune encephalomyelities. Enhancement by the soluble products of encephalitogenic T cells. J. Exp. Med. $176: 303 \sim 307$. 1992.
Maggs, A. and J. Scholes: Reticular astrocytes in the fish optic nerve : Microglia with epithelial characteristics from an axially repeated lacework pattern. to which nodes of Ranvier are apposed. J.

Neurosci. $10: 1600 \sim 1614.1990$.
Moncada, S., R. J. J. Palmer and E. A. Higgs : Biosynthesis of nitric oxide trom L-arginine. A pathway for the regulation of cell function and communication. Biochem. phrmacol. $38: 1709 \sim 1715$. 1989.

Regidor, J. and L. Poch : Histochemical analysis of the lizard cortex : an acevycholinesterase cytochrom oxidase and NADPH-diaphorase study. In W. K. Schwerdtfeger and W. J. A. J. Smeets(Eds.). The Forebrain of Repile. Karger. Basel. pp. 77~84. 19 88.

Righi, M., L. Mori, G. De Libero, M. Sironi, A. Biondi, A. Mantovani and S. D. Donini : Monokine production by microglial cell clones. Eur. J. Immunol. 19 : 1443~1448. 1989.
Sato, T. : Histochemical demonstration of NADPHdiaphorase activity in the pineal organ of the frog (Rona esculenta). hut not in the pineal organ of the rat. Arch. Histol. Cytol. $53: 141 \sim 146$. 1990).
Stuehr. D. J. and M. A. : Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection. lymphokines. or interferon-r. J. Immunol. 139 : 518-525. 1987.

Cell characterization and Nitric Oxide Synthase in the Centeral Nervous System of the Rainbow Trout (Oncorhynchus mykiss)

Seon Il Jang, Min Sun Choi* and Young Gill Kim*
Department of Biology, college of Natural Science, Chonbuk Natiomal Cniwersity, Choniu 561-756. Krrea. *Deparatment of Fish Pathology, college of Ocean Science and Technology, Kunsan National University, Kunsan 573-400. Korea

Nitric oxide(NO) has recently been shown to play an important role on central nervous sstem(CNS) function in mammals. It is synthesized from L-arginine by the enzyme NO synthase. In this study, we examined this enzymes existence in (NS of rainbou trout(Omorhynchus mykiss) and described the forms of microglia. astrocytes. and oligodendrocytes. Two forms of microglit are distributed in CNS one resembling their mammalian counterpart(large microglia: LM). and the other comprising small microglia(SM) with very little cytoplasm. (NS contained istrocytes of a distinct type which form relicular network. but lack connections to capillaries. The oligodendrocyte was generally a much denser cell than the astrocyte. We have detected $\operatorname{NOS}(1.14 \pm 0.12 \mathrm{pg} / \mathrm{min} / \mathrm{mg})$ from rainbow trout CNS. It could be inhibited reversibly or irreversibly by $\mathrm{N}^{\prime \prime}$ MMA and EGTA. These result suggest that the formation of NO from L-arginine in CNS is calcium-dependent and a pathway of early evolutionary orgin.

Key Words: Microglia. astrocytes. oligodendrocytes. CNS. nitric oxide synthase

