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ABSTRACT

We propose to use the entropy of power spectra defined in the frequency domain for the deconvolution
of extended images. Spatial correlations requisite for extended sources may be insured by increasing the
role of power entropy because the power is just a representation of spatial correlations in the frequency
domain. We have derived a semi-analytical solution which is found to severely reduce computing time
compared with other iteration schemes. Even though the solution is very similar to the well-known
Wiener filter, the regularizingng term in the new expression is so insensitive to the noise characteristics
as to assure a stable solution. Applications have been made to the IRAS 60um and 100um images of the
dark cloud B34 and the optical CCD image of a solar active region containing a circular sunspot and a
small pore.
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I INTRODUCTION

Deconvolution of images is one of many inference problems frequently encountered in astronomy. It aims to seek
an object image from observed blurred image data. As often found in most inference problems, we encounter a
difficulty of setting a unique and well established solution in the image deconvolution. Any direct method such as
the matrix inversion usually fails to give a physically meaningful result. Thus, statistical apporach is commonly
employed.

The statistical approach seeks a solution which maximizes a posteriori probability, P(x|d), which is the conditional
probability of the solution x when the data y are given. According to Bayes’ theorem, the a posteriori probability
can be wirtten as

_ P(x)P(ylx)

Plxly) = 9, M)

where P(y|x) is the likelihood function and P(x) is the a priori probability of the restored image. P(d|x) expresses
the fittness to the data with a chosen solution, while P(x) contains a priori information on the true solution. If the
number of data points is much greater than that of object points or/and the quality of data is sufficiently good, it is
possible to find a satisfactory solution by maximizing only the likelihood function, P(d|x). In most cases, however,
the solution is very unstable and so noisy that an additional regulariziging term is required to retain physically
plausible features while reducing artifacts. The prior probability plays the role of this regularizing term.

The total entropy of intensity distribution in an object image S is defined as

S=Zs,- (2)

where the specific entropy of ith pixel is given by a function of the intensity value at ith pixel
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s; = f(z;). (3)

This total entropy S has been used to specify the prior probability P(x) preferentially in the form of P(x) « exp(aS)
with a regularizing parameter a. The specific entropy s; is often taken as, following Skilling(1990),

f(z) =2 —m+ zlog(z/m) (4)

which has been proved to be adaquate for positive and additive distributions, where m is the default value which is
usually taken to be constant over pixels. In their comprehensive discussion on the general properties of the maximum
entropy images, Narayan and Nitayanda(1986) demonstrated that if the second derivative of the entropy function
f(z) varies significantly over the range of z, its Fourier extrapolation and interpolation cause the peaks in the image
to be very sharp and the osillations present at the base line of = to be very weak because of the non-linearity of
the function f(z). These two characteristics, namely the superresolution and the ripple suppression are the main
attraction of using the maximum entropy method for image reconstructions. The mazimum eniropy method is best
sutled for tmages composed of isolated point or compact sources against the low background level. However, in the
case that the background level is high, the nonlinearity of the entropy function f(z) breaks down so that these
characteristics disappear. The ripples near a point source emebedded in an extended source region are not well
suppressed. The maximum entropy method does not work well in the presence of extended sources or high level
background since the entropy does not have any spatial correlation between the pixels.

In order introduce the spatial correlations into image reconstructions, Gull(1989) and Skilling(1989) interpreted
the object image x as a convolution of some hidden, spatially uncorrelated, image h with a blurring function,
namely the intrinsic correlation function. Even though an additional smoothing is brought into the object image,
there remains a problem of determining how many correlation length scales are needed and how large they should
be taken.

In the present study we propose to use the entropy of power specira defined in the frequency domain instead
of the most frequently employed entropy of intensity in the spatial domain, especially when low contrast extended
images are deconvolved. In view of the fact that the power spectra is just a representation of spatial correlations
in the frequency domain at virtually all length scales, the power entropy should be very well suited for extended
sources, since these are characterized primarily by the spatial correlations. Contrary to the approach which makes
use of intrinsic correlation functions, the power entropy approach does not need for particular scale lengths. Noting
that the Fourier transform of the extended sources defined in the spatial domain becomes compact in the frequency
domain and that the intensity entropy has been successful in compact sources, we may expect the power entropy
should work well for the case of the low contrast extended images. Namely, the power entropy favors low conirast
exlended sources. One of the benefits of using the power entropy resides in the fact that both the entropy and the
likelihood are dealt only in the frequency domain so that a semi-analytic solution can be found very easily.

In the following sections we present the maximum power entropy method and its applications to the low contrast
IRAS images of dark cloud B34 and the.optical image of an solar active region containing a sunspot and a pore.
Detailed discussions will be made on the role of the power entropy in the image reconstruction.

II. MAXIMUM POWER ENTROPY METHOD

The deconvolution is the process of finding out x from a set of data y given by
y=x*f+n (5)
or, in a dicrete form,
i =D zifii+n (6)
i

with f;; = f(r; — r;) where f(r) is the point spread function and n; is the random noise with a standard deviation
o; associated with the pixel j. If the noise is spatially uncorrelated, the likelihood function becomes
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_ 1 (i —2)?
P(y|x) = 1;[ \/5;1‘_0']' exp( 20,]2] ) (7

for the Gaussian noise and

Yi
2z
P(y|x) = Hexp(—z]')ﬁ (8)
j
for the Poisson noise. Here z; is the expectation value of the data y; which is equal to }_ z; f;;. The prior probabilty
i

can be defined as
P(x) x exp(a Z Sp) 9)

with the power entropy

sp = Py — my — Pylog(Pn/my) (10)

where P, is the power spectra equal to X,,X}. We note that the discrete Fourier transform of z; is given by

Xn =Zz.~@n,’ (11)

where O,; = exp(yk, - r;) is the Fourier Kernel.
In the case of Gaussian noise, it can be shown from equation (1) that the maximization of the a posterior:
probability P(x|d) is equivalent to the minimization of the following functional
1o (W5 —%)°
H:a%}&by&hm)—&+mJ+§§}—;?—. (12)
If the standard deviation is assumed to be constant over pixels, we can specify this functional purely in the frequency
domain as

1
H = &Y [1Xa P 108(1Xa /) = [Xal2 + o] + 5 3 Vo = FaXal?/No? (13)

when the convoultion theorem and Parseval’s relation are employed. In this equation, N is the total number of pixels.
The last term of equation (13) can be also derived directly by assuming that the distance between Y, and F, X,
follows Gaussian statistics with the standard deviation o, at the nth pixel in the frequency domain. Differentiating
H with repect to X} one finds that

(Yo = FoXa)Fy

2a log(| X, |2/mp) X, — No?

0, (14)

which yields
Y.F;

- . 1
|Fal? + eclog(|Xn |2 /ma) No? (15)

This equation is the main result of the present work. Successive substitution of X, with an initial guess X, = Y,
usually converges to a solution within several iterations because the regularizing term o log(|X,|?/m, ) Na? is smaller
than unity and it is rather insensitive to the actual value of |X,]. The solution happens to be very similar to the
well-known Wiener filter. In the case of the Wiener filter, the regularizing term is given by No?/|X,|? which is
relatively sensitive to [X,,|, especially at the high frequency region. One of the great advantages of the maximum
power entropy method over other iterative algorithms lies in the fact that it does not take much in computations
because only three Fourier transforms and a few complex operations will do for the reconstruction of an image,
while the conventional maximum entropy method requires over fifty interations where four Fourier transforms are

Xn
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Fig. 1. The IRAS coadded images of the dark cloud B34 at 60pm (left) and 100um (right). Drawn are contour levels with equal
intervals 0.2 and 1 MJy/sterad respectively and the negative levels are represented by dotted curves. The field of view is 1° X 1° so

that one pixel corresponds to 15”.

needed per one iteration. The weak point of the maximum power entropy method is found in a lack of correlations
between Fourier components in the frequency domain, which makes it difficult to do the Fourier interpolation and
extrapolation. It is impossible to reconstruct an image from an incomplete set of Fourier data. It is also difficult to
get superresolution. Furthermore, the positivity is not guaranteed. In the case of low contrast images, however, this
method works very well to a degree comparable or even superior to that obtained by the conventional maximum
entropy method.

III. APPLICATIONS

(a) Deconvolution of IRAS B34 Images

It is now generally accepted that it is very difficult and time consuming to reconstruct high resolution images
directly from the IRAS sky survey data owing to the IRAS’s peculiar arrangemnet of detectors with different
responses and non-uniform scan coverage. Since the sky survey data are not evenly spaced, IPAC(Infrared Processing
and Analysis Center) processed the data by means of the so-called coadding algorithm to generate evenly spaced
Faint Source Survey images. In this process, various artifacts such as cosmic particle events have been removed.
The point sources have been filtered and the base line removed by applying median filters. The processed data are
then placed into all pixels covered by the detector size to resample them to pixel centers using linear interpolations.

Figure 1 represents two coadded images of the dark cloud B34 taken at 60um and 100um, respectively. The
images are composed of a total of 241 x 241 pixels with a pixel size 0.25', and the center of the frame is located at
a = 5%40™09°,6 = +32°38'18”. The median detector noises are 0.20 and 0.58 MJy/sterad, respectively. As seen
from Figure 1, the zero level of the two images are a little bit different from each other, which could have taken
place during their base-line removal.

To reduce the computing time, we have performed 2 x 2 binning on the original coadded images. Thus one pixel
in these images corresponds to 0’.5. Since our main interst lies in the cloud region, the strong point source located
near the center of the image(see Figure 2) has been eliminated from the image with the use of the point spread
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functions derived by the following method.

The point spread function(PSF) of the 60 um image was obtained by using the strong point source located near
the pixel x=32 and y=49. The extended components extrapolated from adjacent pixels are subtracted from the
image so that only the point source component remains. The PSF is then given by this point source image divided
by the total flux. The derived PSF is shown at the upper right side of Figure 2. The FWHMs along the major
and minor axis are found to be 4.5" and 2’ respectively, which are very close to the values reported by Moshir et
al.(1992). The irregularities shown in the lowest level contour may be partly due to the error introduced by the
process of separating the point source component from the extended component, which is inevitable when the two
components have a strong contrast between them.

In the 100 pm case, it was very diffcult to separate the point source component directly from the extended one.
Thus we have made use of the analytical point spread function suggested by Diego(1985),

C
fz,y) = TT D (16)
where
r=/(2/we)? + (y/wy)?
and

g =1/(z/p=)* + (y/py)*.
Here w; and w, are the FWHMs of the point spread function along the major and minor axis, which are found to
be 5.8’ and 4.0’, repectively (Moshir et al., 1992). The parameters p, p, and p, may be adjusted to fit the observed
flatness near the top of the point spread function. By reguiring the extended component to be as smooth as possible,
a set of the parameters has been determined and the resulting point spread function is shown in the right lower side
of Figure 2.

In actual implementations a special care should be taken for the boundary effect arising from the finite extent
of the observed images. The discrete Fourier transform tacitly assumes that an image is spatially periodic. If the
intensity of an image is uniform near the boundary, the image may be regarded as a part of an intensity distribution
which is extended periodically. One can then use the discrete Fourier transform for the convoultion exactly in the
same way as used in the infinitely extended sources.

In the presence of an intensity gradient near the boundary as is in our case, the boundary effect is inevitable. In
this case the following two techniques may be exploited. The fitst is to prepare a region of image which encloses
the region of our interest. After deconvolution by using the periodic boundary condition, we take only the inner
part of the image which is free from the boundary effect. The other one is to modify the discrete convolution to
accommodate the finite extent of the image. Here we may use a modified convolution form of

2i%ifi
2; = =2 — (17)
T i

as suggested by Aumann et al(1990) where the summation is over the pixels within the image. The weight factor

w; = 1/} f;; has the value of unity at the inner region, while it becomes larger near the boundary. This approach

may be 1;seful when the images encompassing the region of interest is not available. In the present work, we have
chosen the first approach because it is easy to implement and larger images are available to us.

Figure 3 and Figure 4 show the 60um and 100um images reconstructed by means of our power entropy scheme
with the use of the dimensionless regularizing parameters @ = aNo? = 103, 10~4, 10~5 and 10~¢, where we
have taken sufficiently small value m, = 10~2°. As can be seen from the figures, the reconstructed images look
very smooth without artifacts or noises when & is taken sufficiently large. As & decreases, fine details appear
but regretably accompanying artifacts. It still remains a problem of how one determines an optimal value of the
regularizing parameter.

Figure 5 illustrates a relation between the regularizing parameter & and the root mean square value of residuals
given by

RMS = \/Z [Yn = FuXa2/(No?). (18)
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Fig. 2. The regions of our interest along with their point spread functions. From the left upper side are shown 60um coadded
image, the point spread function associated with it, IOOan coadded image, and its point spread function. The contour levels in the
two coadded images are the same as in Figure 1. Drawn are contours of 0.01, 0.1, 0.3, 0.5, 0.7 and 0.9 of each maximum in the point

spread functions.

It is evident that the upper limit of & is 1073, since any value exceeding this makes the data under-fitted. The most
appropriate choice for a set of & values can be found from the qualitative comparison between the two band images.
In the present work, we have selected a set of & values in such a way that the resolved feautures should match well
between the 60um and 100um images. They are found to be @ = 104 for the 60 pm image and 107°, for the 100
pm.

Artifacts seen near the removed point source region such as the fringe pattern in the 60pum image and the hole in
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Fig. 3. The reconstructed 60pm images. From the upper left side are the images reconstructed with the use of a = 10—3, 10_4,

1075 and 108, The contour levels are the same as in Figure 1. & = 1074 has been chosen as an optimal value. See text.

the 100um have been originated from the error introduced by the process of separating the point source component
from the extended source component. The reconstructed images clearly show that the cloud is composed of four
or more clumps. The clump located just left from the image center (x=40, y=40) displays rather a large value of
the intensity ratio, Iso//100, Suggesting that it may be a hot point-like source such as H Il regions. To clarify their
detailed structures, it may be desirable to study optical depth and temperature maps deduced from these two band
images.
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Fig. 4. The reconstructed 100m images. From the upper left side are the images reconstructed with the use of a = 10_3, 10—4,

10~5 and 1075, The contour levels are the same as in Figure 1. &@ = 1075 has been chosen as an optimal value. See text.

(b) Deconvolution of Solar Images

Solar images are usually characterized by the presence of the bright background mixed with dark absorption
features as can be seen in Figure 6. The image shown in the figure has been obtained from the CCD observations
made with the use of Fe I 6302.5 filter(bandwidth 125 mA) by Japanese Solar Flare Telescope. One pixel size is
0”.67. The image appears to be highly blurred due to atmospheric turbulence, guiding errors, off-focusing etc..
Since there are no point sources in solar images, the point spread function(PSF) can not be found directly from the
observed images. In the present work, we have exploited the power spectra of the solar granulations observed near
the disk center to derive the PSF. Since the convolution of any two functions is presented by the product of their
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Fig. 6. Observed and reconstructed images of a solar active region containing a circular spot and a small pore. Contour levels 0.1,
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where we assumed that the PSF is symmetric about the origin. Since the observed power is noisy, an analytical
model of the PSF has been used to fit the data. We adopted a linear combination of two elliptical Gaussian functions.

The FWHM of the PSF for this image is found to be 3.5".
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In the reconstructed solar image, Granulations are clearly visible and the boundary between the sunspot and
surroundings becomes sharper. Penumbral region is rather inhomogeneous as it should be, noting the existence of
the penumbral fibrils. The umbral region turns out to be composed of several dark fragments. One of the most
important findings is the severe reduction of the brightness of the pore as seen from the figure. This suggests that
the image of the small sized pore have been highly degraded by blurings. It is noted that the brightness of the pore
is almost comparable to that of the sunspot after the reconstruction. This leads us to believe that the maximum
power entropy method is quite powerful for the scattered light correction which is crucial for quantatitive works in
solar physics.

IV. DISCUSSION

We have introduced the entropy of power spectra to define the prior probability for the deconvolution of low
contrast extended images. By maximizing the a posteriori probability which is proportional to the product of the
priori probability and the likelihood function, we were able to derive a semi-analytic solution of deconvolution. The
computing time of this maximum power entropy solution becomes much smaller than that required by the interation
schemes employed by the conventional maximum entropy method. The smoothness requisite for the extended images
is found to be insured by increasing the regularizing parameter. But if we want to get a smooth image, we cannot
but suffer from the loss of real structures as can be seen from Figure 3 and Figure 5. Alternately, if we want to
get an image having many real structures, we are bound to have many artifacts. An ideal deconvolution method,
however, should be able to reveal real structures and reduce artifacts.

The maximizaion of the entropy in the image reconstruction is equivallent to the minimization of structures.
Therefore the negative value of the entropy (negentropy) may be considered as a measure of (structural) information.
If it is intended to reduce artifacts by minimizing the negentropy, the negentropy should increase only with the
amount of the artifact structural information. In addition, the real structures should contribute to the negentropy
as little as possible.

Let us consider two images with a high and a low constant background. We hope to make the high and low
background structures contribute to the negentropy as little as possible Then the difference in the negentropy
between the two images also should be small as compared with the total negentropy. The conventional intensity
entropy defined in the spatial domain fails to satisfy this requirement, because all the pixels in the spatial domain
contribute to the total negentropy. The total negentropy of the image with the high background is much greater
than that with the low background. This means that it becomnes more difficult to discriminate true structures from
artifacts. This is the reason why the conventional intensity entropy fails to suppress the ripples around a point
source embedded in the high background. However, the power entropy defined in the frequency domain satisfies
this requirement. In this case only the pixel located at the origin of the frequency domain contributes to the total
negentropy because the power of constant level image is given by a delta function located at the center. Since
the real structures contribute little to the negentropy, we can reduce artifacts only by maximizing the total power
entropy. The same conclusion may be drawn for more general cases of extended sources. However, if the image is
composed of point sources, all pixels in the frequency domain contributes to the total power negentropy so that the
power entropy can no longer discriminate between true structures and artifacts. Thus we suggest to employ the
combination of the power and the intensity entropy for the reconstruction of images when the images are made of
both point sources and extended sources.

Almost all of the deconvolution schemes with a regularizing term have a common problem of determining the
regularizing parameter. The optimal value is taken as the value which makes RM S of residulas equal to or a little
smaller than unity. However, in many cases either the noise characteristics or the standard deviation of noises is not
known exactly so that it is not always possible to estimate for RM S . In such cases subjective judgments should be
made for the choice of the parameter & based on any a priori information. We have obtained several deconvolved
images using different values of the regularizing parameter. Since images taken at several wavelength bands are
available, the values of the regularizing parameter can be easily found by imposing that the revealed features in the
two reconstructed images should be similar. If the images containing the same signals but with different random
noises are available through successive observations, the cross-validation test developed by Nunez and Lacer(1993)
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may also be utilized to fix the parameter.
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