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A GENERALIZATION OF PERRON’S
STABILITY THEOREMS FOR PERTURBED
LINEAR DIFFERENTIAL EQUATIONS

Sung Kag Chang*, Hyung Jae Lee and Young Sun Oh

In this paper, sharp stability properties are obtained for perturbed lin-
ear differential equations by generalizing Perron’s type stability theorems,
and some examples of them are given.

1. Introduction

Recently, a number of authors —F.M. Dannan, H.R. Farran, A. Ha-
lanay, J.K. Hale, P. Hartman, T. Taniguchi, S.K. Chang, etc.— have
studied the stability theory of differential equations, and also some of
them have tried to generalize Perron’s celebrated theorem.

In such qualitative theory, Lyapunov’s and Perron’s stability theorems
are most important and popular in the literatures [1,8,9,10,12], etc.

It is an interesting problem under what conditions for the perturba-
tions the qualitative properties of the original equations are preserved or
improved in a suitable sense.

In this paper, we shall define notions of stability, which are called ¢(2)-
(uniform) stability ¢(t)-quasi-(uniform) asymptotic stability and (t)-
(uniform) asymptotic stability of the solutions for systems of differential
equations. Then we are concerned with generalization of Perron’s type
celebrated stability theorems by using (t)-stability concepts for a posi-
tive real function ¢(t) on RT and we also obtain the results in [5,12] as
corollaries of our results. In section 2, we discuss the equivalent conditions
of (t)-stability and ¢(t)-uniform stability for the solutions of linear dif-
ferential equations, in section 3 we discuss @(t)-stability for the solutions
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of the perturbed differential equation %’ti = A(t)z + f(t,z), and also we

give some examples, to which our results can be applied.

2. Preliminaries

Throughout this paper, let B® be the n-dimensional Euclidean space
and R = [0, c0).

For a given function ¢(t,y) € C[Rt x R", R"], we consider following
differential equations:

Y= git) (21)

Let us assume that g(¢,0) = 0 for all ¢ € R*, and the equation (2.1) is
well-posed for sufficiently small initial values at any initial time.

y(t;t1,y1) denotes by the solution of (2.1) with initial condition y(t;) =
Y1, 11 € Rn’ tl __>_ 0.

Now we introduce generalized definitions of stability for the equation
(2.1}

Definition 2.1. Let ¢(t) be a positive real function on R*. The zero
solution of (2.1) is said to be ¢(t)-stable[p(t)-S] if for any € > 0 and
for any t; > 0, there exists 8(¢;,¢) > 0 such that if [|y(¢1)|| < é(t1,¢),
then ||y(t)e(t)" Y| < € for all t > t;; @(t)-uniformly stable[p(t)-US] if
the 8(t1,€) in [(t)-5] is independent of time t; (t)-quasi-asymptotically
stable[p(t)-QAS] if for any € > 0 and for any ¢; > 0, there exist §(;) > 0
and T'(t;,€) > 0 such that if ||y(¢1)] < &(t1), then ||y(t)e()7Y| < ¢
for all t > ¢y + T'(t1,¢); @(t)-quasi-uniformly asymptotically stable[p(t)-
QU AS] if the é(¢;) and the T(¢1,¢) in [p(t)-Q AS] are independent of time
t1; @(t)-asymptotically stable[p(t)-AS] if it is @(t)-stable and ¢(t)-quasi-
asymptotically stable; (f)-uniformly asymptotically stable[p(t)-U AS] if it
is ¢(t)-uniformly stable and ¢(¢)-quasi-uniformly asymptotically stable.

In particular, if we put ¢(t) = ke™ where n is a real number and k is a
constant, then (t)-stability, etc. will be T'(n)-stability, etc., respectively
(cf.[5],[12]). Also, the T'(n)-stability concepts are exactly the same as the
usual definitions of stability when n = 0.

Now we present a modifed lemma for integral inequalities.

Lemma 2.2. ([9],p.315) Assume that the following conditions hold for
functions f(1),g(t) € C|[t1,00), RT]| and F(t,s,u), t > s>t;, u>0:
FWO=J, F(t,s, f(s))ds < g(t)— [, F(t;5,9(s))ds, t = 1y and F(t,s,u)
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is monotone nondecreasing in u for each fired t > s > 0.
Then we have that f(t) < g(t) for all t > t;, when f(t;) < g(t1).

Let A(t) be a continuous n X n matrix defined on R* and let
f(t,z) € C[[0,00) x R*, R*] with f(¢,0) = 0 for any ¢ € [0, 00).

Consider a linear differential equation

dz

— = 2.2
" = Alt)e (22)
and a perturbed differential equation of the above:

ds _
dt

Let U(t) be a fundamental matrix of (2.1). Then it is well known that
the solution z(t) of (2.3) satisfies the integral equation

Alt)z + f(t, z). (2.3)

z(t) = U U (t1)z(t1) + zU(t)U_l(s)f(s,x(s))als, t >t (24)

t1
Next, we obtain the following basic lemma.

Lemma 2.3. Let k(t) be a positive real function on RY. Then the
zero solution of the differential equation (2.2) is k(t)-stable if and only
| UU(s8)|| < E($)h(s)™Y, t > s> 0 for some positive real function
h(t) on R*.
Proof. Let z(t) = z(t;t1,21) be a solution of (2.2) with an initial value
(t1,21), t1 > 0. Then we have the expression z(t) = U(t) U~ (t1)zy1, t >
ty > 0. Suppose that the zero solution of (2.2) is k(t)-stable for a positive
real function k(t) on R*. Then for ¢ = 1, there exists a positive real
number 6(¢;) such that if ||z(¢;)|| < 8(¢1), then ||z(t)k(t)7]| < 1 for all
t >t > 0. Let uy € R* be an arbitrary vector with ||ui]| < 1. Then
|6(21)ur|| < é(ty) and hence ||U(8)U(#1)é(t )ur k()| < 1, ¢t > ¢ > 0.
The relation [|U(#)U~ (1)t )wik(t) Y] = 6(¢0)k() " U()U (t1)ua]|
yields || U(t)U " (t1)us] < ﬁk(t). Since u; is arbitrary, with ||u,|| < 1,
we have ||U(t)U~(#)] < Eﬁ(iT)k(t)' Thus, without loss of generality, we
can take continuous function é(t) on [0,00). Taking A(t) = §(¢), we have
the result.

Conversely, suppose that there exist positive real functions k(t), h(t)
on RY such that |[U()U(s)|| < k(t)h(s)™',t > s > 0. Given any € > 0
and any t; > 0, there exists 6(¢;) with 0 < é(¢1) < h(t1)e such that if
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lz(t:)ll < é(t1), then |le(t)k(t)7"|| = h(t) " z(t:)]] < A(t)"h(t1)e = ¢
for all t > t; > 0. Thus the zero solution of (2.2) is k(t)-stable for a
positive real function k(t) on R*.

Lemma 2.4. Let k(t) be a positive real function on Rt. Then the zero
solution of the differential equation (2.2) is k(t)-uniformly stable if and
only if ||[U(H)U(s)|| < rk(t), t > s> 0 for some positive real number r.

Proof. We can prove the lemma by the analogous method to the proof of
lemma 2.3, taking the functions é(¢) as a constant.

3. ¢(t)—Stability Theorems

In this section we discuss (t)-stability of the zero solution for the
perturbed differential equation (2.3).

Assume that f({,0) =0 for all t € R* throughout this section.

Let us consider the following differential equations

dy

N A 00) (3.1)
Y~ k) (3:2)

where k(t) and h(t) are continuous positive real functions on R*.

Henceforth, we assume that the above differential equations (3.1) and
(3.2) possess the existence and the uniqueness properties of solutions on
R* for sufficiently small initial values.

We are now in a position to prove our results.

Theorem 3.1. Let the following conditions hold for the differential equa-
tion (2.3): '

(1a) || f(t,z)|| £ F(t,||z]|), F(t,0) =0, and F(t,u) is monotone non-
decreasing with respect to u for each fized t > 0,

(1b) F(t,u) € C[[0,00) X R*, R*],

(1c) The zero solution of the differential equation (2.1) is k(t)-stable for
a positive real function k(t) on R*, that is, there exist functions k(t) > 0
and h(t) > 0 on R* such that

IU@U(s)l| < k(t)h(s)™, t= s > 0.

If the zero solution of the differential equation (3.1) is p(t)-stable [p(t)-
quasi-asymptotically stable], for a positive real function ¢(t) on R*, then
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the zero solution of (2.3) is k(t)p(t)-stable [k(t)@(t)-quasi-asymptotically
stable].

Proof. First, we shall prove that the zero solution of (2.3) is k(t)p(t)-
stable for a positive real function ¢(t) on R*. Let z(t) = z(¢;t;,2,) be a
solution of (2.3) with an initial value (¢;,z;), t; > 0. Then the solution
z(t) is of the form (2.4).

Thus we obtain that from conditions (1a) and (1¢),

(0] < k(e)h(t) | + KO | h)F s, la(s) s

So k(t)[lz(t)]| < h(t) M lell + fi, A(s) F(s, |z(s)]])ds.

Thus let y(t) = y(¢;t1, 1) be the solution of (3.1) passing through (¢;, %)
and let h(ty)Ja1| < 3. Then k()" [o(0)] - Ji. h(s)F(s, la(s)lDds <
h(t1) " ||lz1]| < y1. While, since 3y = y(t) — f h(s) 1 F(s, k(s)y(s))ds,

(0l - k@) [ (s F (s, (o)) ds
< R(OU(D) ~ k(1) [ () F(s, b)y(s)ds.

31
Therefore, applying lemma 2.2, we obtain that ||z(t)|| < k(¢)y(t), by tak-
ing @1 as ||z1| < k(t1)ya t > t1. Hence the zero solution of (2.3) is
k(t)@(t)-stable for a positive real function ¢(¢) on R*.

Next, suppose that the zero solution of (3.1) is p(t)-quasi-asympto-
tically stable for a postive real function () on R*. Then for any € > 0
and any t; > 0, there exist §;(¢;) > 0 and T(¢;,¢) > 0 such that if
ly(t1)]] < 8:1(t1), then ||y(t)p(t)7 Y| < € for all t > t; + T(¢;,€). Thus
set 8(t1) = h(t1)é:1(t1). U ||z(21)]| < é(t1), then we can take y; > 0 such
that A(t1)"M|z(t1)]| < v1 < é1(t1). Accordingly, ||z(2)|| < k(t)y(t) for all
t > 1+ T(t1,¢) and ||ly(t)p(t) || < € for all t > t; + T'(t1,€). Therefore
we have [|z(t)(k(t)e()) ]| < [k@®y0)kE®) ()] = [lu(t)e®)™"] <
e for all t > t; + T(¢;,¢), the zero solution of (2.3) is k(t)p(t)-quasi-
asymptotically stable for a positive real function ¢(t) on R*.

We get the following from Theorem 3.1.

Corollary 3.2. ([5]) Let the conditions (1a), (1b), and (1¢) hold for the
differential equation (2.3). If the zero solution of the differential equation
(3.1) is T(n)-stable [T(n)-quasi-asymptotically stable], for a real number
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n, then the zero solution of the differential equation(2.3) is k(t)e™ -stable
[k(t)e™-quasi- asymptotically stable].

In particular, if k(t) = Ke™ (in (l¢) and (3.1)) for a real number
m and a positive constant K and if the zero solution of (3.1) is T'(n)-
stable [T'(n)-quasi-asymptotically stable], for a real number n, then the
zero solution of (2.3) is T(m + n)-stable [T'(m + n)-quast-asymptotically
stable].

By the similar method as in the proof of theorem 3.1, we have the
following.

Theorem 3.3. Let the conditions (la) and (1b) hold for the differen-
tial equation (2.3). Furthermore, suppose that the following condition is
satisfied:

(2¢) The zero solution of the differential equation (2.2) is k(t)-uniformly
stable for a positive real function k(t) on R, that is, there ezists a function
k(t) > 0 such that |U(t)U'(s)|| < k(t), t > s > 0.

If the zero solution of the differential equation (3.2) s ¢(t)-uniformly
stable [p(t)-stable, p(t)-quasi- (uniformly) asymptotically stable], for a pos-
itive real function ¢(t) on RT, then the zero solution of (2.3) is k(t)e(t)-
uniformly stable [k(t)p(t)-stable, k(t)p(t)-quasi-(uniformly) asymptotically
stable].

We get the following from Theorem 3.3.

Corollary 3.4. ([5]) Let the conditions (1a), (1b), and (2c) hold for the
differential equation(2.3).

If the zero solution of the differential equation (3.2) is T'(n)-uniformly
stable[T'(n)-stable, T'(n)-quasi-(uniformly) asymptotically stable], for a real
number n, then the zero solution of the differential equation (2.3) is k(t)e™ -
uniformly stable [k(t)e™-stable, k(t)e™-quasi-(uniformly) asymptotically
stable].

In particular, if k(t) = Ke™ (in (2¢) and (3.2)) for a real num-
ber m and a positive constant K and if the zero solution of (3.2) is
T(n)-untformly stable [T'(n)-stable, T'(n)-quasi-(uniformly) asymptotically
stable], for a real number n, then the zero solution of (2.3) is T'(m + n)-
uniformly stable [T(m + n)-stable, T(m + n)-quasi-(uniformly) asymptot-
ically stable].

Remark. If k(t) is a positive constant, then the equations (3.1) and (3.2)
are equivalent.
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Now we give an example for Theorem 3.1.

Example 3.5. Consider the two-dimensional perturbed linear system:

~ 4 filt,,2)
S — T, =
21 + 1 Sl

1
T oEF1
where fi(t,z,2) = 2% and fy(t,2,2) = z®. Then

N 0
A(t):( i )

1
0 T /i1

z+ falt, z, 2) (8:3)

is a continuous 2 X 2 matrix defined on R*. Consider the linear equations:

. 1
W
1
é = — Z (34)

Then z(t) = z;r1e”V and 2(t) = z;r1e"Y**! are the solutions of (3.4)
where r; = eTVatl

Thus a fundamental matrix for (3.4) is given by

VI g
U(t):( ) t>0,

0 VA

which has the norm: ||U(t)|| = eV**1, t > 0. Hence it can be taken
as k(t) = h(t) = e V! and F(t,u) = uv®. Now consider the differential
equation

d
o = O k() = ey (3.5)
Then the solution of (3.5) is given by y(t) = 2 2t 2

= A {
11— fftl e~Vitige' T
0.
Note that fttj 6_“t+1dt S fooo 8_“/i+—1di = 46_1. Take Y1 as |y1| < g,_
Then

|y1| | ( )| = |y1| < |yl|
1+ |y1[de™? 1 —yi f) e~ViHTdt] 1 — |yy|det
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Therefore, the zero solution of dy(t) = e ViF2 i (uniformly) stable.

dt
Hence the zero solution of the system (3.3) is e"V*+-(uniformly) stable.

Moreover, the zero solution of the system is asymptotically stable, but not
exponentially. This sharp stability property cannot be obtained by the
results in [5,12]

We shall give another example.

Example 3.6. Let the following conditions hold for the differential equa-
tion (2.3):

(1e) [Lf (2, )|l < a(B)l|]l,

(1f) a(s) € C[[0, 00), B*] and there exist a positive constant M and a
positive real function k(s) such that [3° a(s)k(s)ds < M.

If the condition (2¢) holds, then the zero solution of (2.3) is k(¢)-
uniformly stable.
Proof. Set F(t,u) = a(t)u, u>0.

We show that the zero solution of the differential equation

W — k() (3.6)

is uniformly stable.
In fact, first of all, let y(t) = y(t;¢1,41), t > t; > 0 be a solution of
(3.6) passing throtugh (t1,71). Then we obtain that
y(t) = y(tl)ef'l a(e)k(e)de < y(t1)eM because [§° a(s)k(s) < M.
Accordingly, the zero solution of (3.6) is uniformly stable.
Thus by theorem 3.3, the zero solution of (2.3) is k(¢)-uniformly stable.
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