DOI QR코드

DOI QR Code

Three dimensional transition solid elements for adaptive mesh gradation

  • Choi, Chang-Koon (Department of Civil Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Nam-Ho (Department of Civil Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 1993.10.25

Abstract

A new three-dimensional transition solid element was presented for the automated three-dimensional adaptive h-refinement or the local mesh refinement where the steep stress gradient exists. The proposed transition element was established by adding variable nodes(element nodes) to basic 8-node for an effective connection between the refined region and the coarse region with minimum degrees of freedom possible. To be consistent in accuracy with 8-node solid element with nonconforming modes, this transition element was also improved through the addition of the modified nonconforming modes. Numerical examples show that the performance of the element and the applicability to 3D adaptations are satisfactory.

Keywords

References

  1. Chang, K.H. and Choi, K.K. (1992), "An error analysis and mesh adaptation method for shape design of structural components", Comp. and Struct.,44(6), 1275-1289. https://doi.org/10.1016/0045-7949(92)90372-7
  2. Choi, C.K. and Lee, N.H. (1993), "A 3-D adaptive mesh refinement using variable-node solid elements with nonconforming modes", Proceedings of Second Asian-Pacific Conference on Computational Mechanics, Sydney, Austrailia, August.
  3. Choi, C.K. and Park, Y.M. (1989), "Nonconforming transition plate bending elements with variable midside nodes", Comp. and Struct., 32(2), 295-304. https://doi.org/10.1016/0045-7949(89)90041-2
  4. Cook, R.D. (1981), Concepts and Applications of Finite Element Analysis, 2nd edn., Jhon Wiley & Sons, New York.
  5. Devloo, P.R. (1991), "A three-dimensional adaptive finite element strategy", Comp. and Struct., 38(2), 121-130. https://doi.org/10.1016/0045-7949(91)90091-Y
  6. Gupta, A.K. (1978), "A finite element for transition from a fine to a coarse grid", Int. J. Num. Meth. Eng., 12(1), 35-45. https://doi.org/10.1002/nme.1620120104
  7. Roark, R.J. (1965), Formulas for Stress and Strain, McGraw-Hill, 4th edn., New York, 104-106.
  8. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, 3rd edn., New York, 398-402.
  9. Wilson, E.L. and Habibullah, A. (1989), SAP90-A Series of Computer Programs for the Static and Dynamic Finite Element Analysis of Structures, Computers and Structures, Inc., Berkeley, California.
  10. Wilson, E.L. and Ibrahimbegovic, A. (1990), "Use of incompatible displacement modes for the calculation of element stiffnesses or stresses", Finite Element in Analysis and Design, 7, 229-241. https://doi.org/10.1016/0168-874X(90)90034-C
  11. Zienkiewicz, O.C.;Taylor, R.L. (1989), The Finite Element Method, McGraw-Hill, 4th edn., 1, London.

Cited by

  1. Refined Three-Dimensional Finite Element Model for End-Plate Connection vol.122, pp.11, 1996, https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1307)
  2. Error estimates and adaptive finite element methods vol.18, pp.5/6, 2001, https://doi.org/10.1108/EUM0000000005788
  3. Variable-node plate and shell elements with assumed natural strain and smoothed integration methods for nonmatching meshes vol.51, pp.6, 2013, https://doi.org/10.1007/s00466-012-0774-y
  4. Adaptive meshing and analysis using transitional quadrilateral and hexahedral elements vol.46, pp.1-2, 2010, https://doi.org/10.1016/j.finel.2009.06.010
  5. (4+n)-noded Moving Least Square(MLS)-based finite elements for mesh gradation vol.25, pp.1, 2007, https://doi.org/10.12989/sem.2007.25.1.091
  6. Transition finite element families for adaptive analysis of axisymmetric elasticity problems vol.47, pp.4, 2011, https://doi.org/10.1016/j.finel.2010.11.002
  7. A multigrid coupled (FE-EFG) approach to simulate fatigue crack growth in heterogeneous materials vol.72, 2014, https://doi.org/10.1016/j.tafmec.2014.03.005
  8. Finite element linear and nonlinear, static and dynamic analysis of structural elements: a bibliography (1992‐1995) vol.14, pp.4, 1997, https://doi.org/10.1108/02644409710178494
  9. Elasto-plastic nonconforming solid element with variable nodes vol.3, pp.4, 1995, https://doi.org/10.12989/sem.1995.3.4.325
  10. A homogenized XFEM approach to simulate fatigue crack growth problems vol.150, 2015, https://doi.org/10.1016/j.compstruc.2014.12.008
  11. Mismatching refinement with domain decomposition for the analysis of steady-state metal forming process vol.48, pp.7, 2000, https://doi.org/10.1002/(SICI)1097-0207(20000710)48:7<1089::AID-NME918>3.0.CO;2-4
  12. A hybrid 8-node hexahedral element for static and free vibration analysis vol.21, pp.5, 2005, https://doi.org/10.12989/sem.2005.21.5.571
  13. Three dimensional non-conforming 8-node solid elements with rotational degrees of freedom vol.4, pp.5, 1996, https://doi.org/10.12989/sem.1996.4.5.569
  14. Two- and three-dimensional transition element families for adaptive refinement analysis of elasticity problems vol.78, pp.5, 2009, https://doi.org/10.1002/nme.2508
  15. 21-node hexahedral isoparametric element for analysis of contact problems vol.14, pp.7, 1998, https://doi.org/10.1002/(SICI)1099-0887(199807)14:7<681::AID-CNM182>3.0.CO;2-T
  16. Finite element techniques for wind engineering vol.81, pp.1-3, 1999, https://doi.org/10.1016/S0167-6105(99)00010-0
  17. A 3-D ADAPTIVE MESH REFINEMENT USING VARIABLE-NODE SOLID TRANSITION ELEMENTS vol.39, pp.9, 1996, https://doi.org/10.1002/(SICI)1097-0207(19960515)39:9<1585::AID-NME918>3.0.CO;2-D
  18. A gap element for three-dimensional elasto-plastic contact problems vol.61, pp.6, 1996, https://doi.org/10.1016/0045-7949(96)00111-3
  19. A direct modification method for strains due to non-conforming modes vol.11, pp.3, 2001, https://doi.org/10.12989/sem.2001.11.3.325
  20. Variable-node axisymmetric solid element and its application to adaptive mesh refinement vol.11, pp.4, 2001, https://doi.org/10.12989/sem.2001.11.4.443
  21. Mixed formulated 13-node hexahedral elements with rotational degrees of freedom: MR-H13 elements vol.11, pp.1, 2001, https://doi.org/10.12989/sem.2001.11.1.105
  22. Versatile Variable-Node Flat-Shell Element vol.122, pp.5, 1996, https://doi.org/10.1061/(ASCE)0733-9399(1996)122:5(432)
  23. Transition membrane elements with drilling freedom for local mesh refinements vol.3, pp.1, 1995, https://doi.org/10.12989/sem.1995.3.1.075
  24. Variable-node element families for mesh connection and adaptive mesh computation vol.43, pp.3, 2012, https://doi.org/10.12989/sem.2012.43.3.349