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A CLASS OF CONDITIONAL WIENER INTEGRALS

SEUNG JUN CHANG AND DONG MYUNG CHUNG

1. Introduction

Let (Co[0,T],B(Co[0,T]), myw) denote Wiener space where Co[0, T
is the space of all continuous functions z on [0,T] with z(0) = 0.
Many physical problem can be formulated in terms of the conditional
Wiener integral E[F|X] of the functional defined on Cy[0,T] of the
form

T
(L1) F(@) = exp{~ [ Vialt)at}

where X(z) = z(T)and V is a sufficiently smooth function on R.
Indeed, it is known [see [3],[4],(7]] that the function U defined on R x
[0,T] x R by

(e t60) = pmenpl-C SR IR + lelt) = €~ o

is the Green’s function for the partial differential equation

ouU 18
5 =208 U-VU.

So it is of interest to obtain formulas for evaluating such condi-
tional Wiener integrals.

J.Yeh [8] derived several Fourier inversion formulas for conditional
Wiener integrals and then used the formulas to evaluate conditional
Wiener integrals. Recently, Park and Skoug ([5],[6]) obtained a simple
formula of another type for evaluating conditional Wiener and Yeh-
Wiener integrals. Chung and Kang [2] defined abstract Wiener space
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version of conditional Wiener integrals and then obtained evaluation
formulas for conditional abstract Wiener integral of various functions
which include some results given in [5],[6].

In this paper, we consider a class of functions V of the form V (s, §) =

~——-§2 + afq(s)¢, where ¢ € L%[0,T] and a, B are complex, and give

exphat formulas of the conditional Wiener integral of the functions F
of the form (1.1) for the class of V’s.

2. Preliminaries

For the partition 7 = 7, = {t1,...,tn} of [0,T] with 0 = # <
t < -o- <tp =T, let X, : Cl[0,T] — R" be defined by X.(z) =
(z(t1),- - ,z(ta)). Let B(R") be the o—algebra of Borel sets in R".
Then a set of the type

I={z€Cy[0,T): X,(z) e B} = X,.‘j(B), B € B(R")

is called a Borel cylinder set. The collection F of such a set forms an
algebra of subsets of Cy[0,T]. It is well known that the set function
My on F defined by

mw_(I)"—'/BK(T,Sdf-;

where

0= ([T -0} el S ]

i=1 ,—1

with £ = (£1,--- ,&:) € R™and& = 0, is a probability measure and
thus m,, is extended to the Borel o-algebra B(Cy[0, T]) generated by
F.

Let F be a complex-valued (C-valued) integrable function on Cy [0, T'].
Let F(X;) be the o-algebra generated by the set {X;}(B) : B €
B(R™)}. Then, by the definition of conditional expectation, the con-
ditional expectation of F given by F,, written E[F|X,], is any real
valued F,-measurable function on Cy[0, T] such that

/ Fdmy, = / E[F|X,ldmy for E€F,.
E E
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It is well known that there exists a Borel measurable and Px, -integrable
function ¥ on (R", B(R"), Px, ) such that E[F|X;] = Yo X, and Px,
is the probability distribution of X, defined by Px_(A4) = m,(X;1(4))
for A € B(R"). Following Yeh [8], the function ¥(£), written E[F|X, =
E], is called the conditional Wiener integral of F' given X-.

For a given partition 7 = 7, of [0,T] and = € Cy[0,T], define the
polygonal function [z] on [0, T] by

[2)(6) = a(tj-1) + 5 " T a(t) - a(t50),

fort € [t;_y,t;, 7 =1, ,n. Likewise, for each f = (€1, ,&n) €
R™, define the polygonal function [é] of £ on [0,T] by

[El(2) = &5 1+ =Y (= &),

fort € [t;_1,t;), 1 =1, ,m, and {o =0.
The following theorem, due to Park and Skoug [5], is a evaluation
formular for conditional Wiener integrals.

THEOREM 2.1. Let F be an integrable function on Co[0,T]. Then
or £ € R,
EF@IXo(e) =8 = [ Fle—[e]+ {dma(o).

Col0,T]

We note that a real valued function Y on [0,7] x Co[0,T] defined
by

Y(t,2) = u(t) = 2(t) ~ :=(T)

is a pinned Wiener process on (Cs[0, T}, B(Co[0,T]),mw) and [0, T
with y(0) = 0 and y(T) = 0. This process {y(¢),0 < t < T} in-
duces the Gaussian measure, called the pinned Wiener measure m,,
on CP[0,T] = {z € Co[0,T)|z(T) = 0}, which is uniquely determined
by mean function E[y(t)] = 0 for every t € [0,T] and covariance func-
tion. E[y(s),y(#)] = min{s,} - 7

In the following theorem, we gives a convenient formula for evalu-
ating conditional Wiener integrals of the function involving quadratic
functional.
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THEOREM 2.2. Let F be an integrable function on Cy[0,T]. Then
for0<t; <T and €, € R,

E{F()|s(t1) = 1, 2(T) = €] = / F(y + g)dmy(y),
C30,T-11]
where g(t) = : E-&)+&,te0, T -t).

T-t
In particular if {; = 0, then

BF@I(D) =€ = [ Fly+hdmy(y),
0[0,7)
where h(t) = -,;-,5, telo, I_‘].
Proof. The proof easily follows from the fact that
E[F()|z(t1) = &,=(T) = €] = E[F(2(-) + &)l=(T — t1) = £ - &1,

Theorem 2.1, and the change of variable formula.

3. Main Theorem

Let k be the covariance function of the pinned Wiener process {y(t) :
t € [0, T}, that is, k is the function on [0,T] x [0, T] defined by

31 k(s,t) = min{s,t} — Tfrz

Let A be the integral operator on L?[0,T] (the space of real valued
square integrable function on [0,T]) defined by

- |
(3.2) Af(s)=/0 ks, 0f@)dt, s€[0,T], feI*o,Tl.

Then it can be shown that the orthonormal eigen-functions {e.} of A
are given by

(33) en(s) = \/§ sin(5-s)
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and the corresponding eigen-value {ay} are given by
T2
nx?’
Further, it can be shown that {e,} is a basis of L?[0, 7], and that 4

is a trace class operator on L?[0,T]. The Karhunen - Loeve theorem
[1] shows that the Fourier series representation of the pinned Wiener

process {y(t) : t € [0, T]} is given by

(3.4) ap =

(3.5) y(t) = i Zpen(t), 0<t<T
n=1

where 2,’s are orthogonal Gaussian random variables with E[z,] =
0 and
E[2}] = a,.

LEMMA 3.1. Fora>0t€[0 T},
— _cosh/a(T-t) 1
(36) Z nin? + a:m“’s( o) = 2J/asinhy/at  2aT"

Proof. To proof this lemma, we use a known result that

,.cos(nz) 1 wcos(az)
= —_———, g <z<
Z( 1) n?—a? 2% 2asin(ar)’ rsE2=%h
n=1
where a is not an integer. i we let a = i/aT/x and z = (T —t)/T,
then

Z( ol n’wr"' +czT2 cos(nx ~

n=1

nx wlcosh(y/a(T —t))  «?
T 2y/aTsinhy/aT  2aT?

T t) =
Hence we obtain

= T nr . cosh(y/a(T—1)) 1
2 A tar T = 2\/asinhy/aT  2aT"

n=]
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LEMMA 3.2. Fora > 0, let
R(s,t,a) = Z 1+ e,.(s)e,,(t), s,t €[0,T]

where a, and e, are as in (3.3) and (3.4). Then

sinhy/a(T — t)sinky/as

| _ Vasinh/oaT
(3.7) R(s,t,a) = sinhy/a(T — s)sinhy/at
JasmbJaT , s2t.

Proof. Using (3.3), (3.4) and Lemma 3.1 we have

T2
n2x2 + oT? T (
T
T o

= W [coshy/a(T — |s — t])) — coshy/a(T — |s + )]
sinhy/a(T — t)sinh./as s <t

R(s,t,a) = s) sm(-—t)

s—1t)] - cos[—%r-(s + t)]]

JasinhJaT  * ="
sinhy/a(T — s)sinhv/at
JasimhJoT  ° ="

THEOREM 3.3. Let F' be a measurable function on Co[0, T] defined
by

T T . »
F(z) = exp{-—-;-a /0 22(s)ds + aff /o a(s)z(s)ds}, = € Col0, T,
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2
where Rea > —E’fﬁ, B €C, and q € L*[0, T]. Then for£,& € R,

o /T T
E[eXP{—E ‘/t1 z*(s)ds + aﬂ/ q(s)z(s)ds}|z(t1) = &1,2(T) = ¢]

_( \/—(T"tl) ) {(5 fl }
sinh\/a(T — t1) AT — 1)

exp{—icoth\/_(T )+ &)+

T-t. sinh \/Et 1
C"2’32

T—t Tt
/ / R(s,t,a)q(s + t1)q(t + t1)dsdi}.
0 0

\/_ﬁfl }
sinh/o(T — t)

(t +t1)dt}

- expf

2
Proof. We first note that for Rea > _5%’ exp{—-;-a foT z%(s)ds} is

square Wiener integrable, and that for any z € C, exp{z foT g(3)z(s)ds}
is square Wiener integrable. Hence F is Wiener integrable for Rea >
2

—-5172- and any B € C. So F is conditional Wiener integrable for the
given z(t1) = & and z(T) = €. By Theorem 2.2, we have, for §,£; € R
a T T
E[exp{——E/ zz(s)ds + aﬂ/ q(s)z(s)ds}lz(tl) =&,z(T) = {]
| 2% t
o T—tl 2
= [ en{-5 [ &)+
Cg[o,T—tll (]
T—t
+aB [ gl +0)u(e) + o(s))dsdmy(s)

]

where g(t) =

o

1 2
(3.8) ‘/;'3[0,T—t1] exp{—Ea Z [(zn +9n)* — 2B(gn(2n + 92))] }dmy(y)

n=1
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where y(t) = Y oo, znen(t) is the Fourier series representation of
function yin CP[0,T — #1] as in (8.5), g(t) = Yo ow; gnen(t), and
g(t + t1) = Y 2, gnen(t). Since zis are independent Gaussian ran-

dom variables with mean 0 and variance ay, (3.8) equals

oo a 23
H / exp{_"z'n2 + a(Bgn — gn)2n + @BGngn — Egnz }dmyp(y)
c310,T—41] 2

n=1
= 1 a , u? a,
= - al — ——}du ¢ - ndn — 5 Y9n
nl;Il[{ e /Rexp{ g U+ ownu 2%} u} exp{afgngn — 59 }]

where w,, = B¢n — gn. Hence the preceding equals

(3.9)
o0
‘ 1 1 1., 5 0opwn aazw?
J__-‘_[l [\/21ranexP{ 2(a + a, O aa,, + 1) + 2(aa, +1)
a
+ afgngn — ’2’9121}]
_ ﬁ [(1 + aan)—dexp o?FPangk o’angs  a*Bangngs
o 2(aa, +1)  2(aan+1) aa, +1
a
+ afgngn — Eyﬁ}]
= -3 22N a X a
= 1 2z n 2 - n 2
[Jl;‘[l( ‘+aa,,)] exp{ 2 n; oy + 1% + 2 ’; o, + 19
—azﬂi—ﬁ—-q g +aﬁ§:g q —gigz}
1 + aan nIn nin 2 nt-
n=1 n=]1 n=1
Using
b 2?2 sinz
!-:Il(l - n27r2) =Tz
we have

b (T—#).  sinh/a(T —t)
(8.10) nl;lll”“ = V(T —t1)
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Observing that

(3.11)
2 an T—t, (Tt
= 1+ aa" = [, /) R(s,t,a)q(s + t1)q(t + t1)dsdt
(3.12)
o T—t Tt
~1 + aay? / / R(s,t,a)g(s)g(t)dsdt
(8. 13)
T~ Tt
Y; 1 + aa, 1+aa, 1?9 = / / R(s,t,a)q(s + t1)g(t)dsdt
T—t
(3.14) Z Indn = / g(t)g(t + t1)dt
n=1
Tt
(3.15) Z & = / g2(t)dt
n=1

and using Lemmas 3.1 and 3.2 with replacing T by T — t;, one can
show that

(3. 16)
el an o, 1™,
_z—nglaan_*_lgn—i;gn

alty — K1 2
- —%{\/5(62 + €1) coth Va(T - t1) - sinh2\>/a_(§"£— t) (ET —Etl) }
(3.17)

~a’f Z TFoa Inin+ aﬂZgnqn

n=1

— T-n sinh /ot &1
—aﬂ(é—fl)/o (sinh\/E(T-—tl) + s Ya(t +t1)dt.

Putting (3.10),(3.11),(3.16) and (3.17) in the last equation in (3.9) we
obtain the desired result in the theorem.
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COLLOARY 3.4. Letaand F be as_’in Theorem 3.3. Let 0 =ty <
t1 <--- <tn =T. Then we have, for £ = (£1,8&2, -+ ,€x) € R®

E[F(z)l-’ﬂ(tl) =100+, 2(ta) = &n)

_ Vot —te—1) 4 €k — k1)
H sinh \/a(tr — ta—1 )) 2tk — te—1)

- exp{ _\/T— coth va(te — te—1)(¢E + &-1) + sinh {Z—Zf lijk—l) J

te—te~1 inh
exp{aB(& — Ek—l)A (Zx j&(tfttk_l)
€k

-1
E;_—&*_—I)Q(t +tr_1)dt}

te—te—1 ple—ilx—3
/ / R(s,t,a)q(s + te—1)g(t + tx—1)dsdt}],
0 0

+
a2ﬂ2
2

- expf

where to = 0,& = 0and R(s,t,a) is as in (3.7) with replacing T by
tp —tk—1.

Proof. Let V(s,£) = at? — 2afg¢(s)¢. Since the Wiener process
{z(s) : 0 < s < T} is additive, it can be shown that

T
Elexp{—+ / V(s,2(s))ds}lo(te) = &, k= 1,2, --- 7]

= E[exp{—— Z{ V(S, 3(3))d3}}|z(tk) = Eksk =1, 2: ttt ,n]

£ 7%

= H E[exp{_- V(s,z(s))ds}He(te-1) = €x—1,z(te) = &]
k—l fe-1

- I Blew(-1 5[ Wiea)dsHo(tn — tuna) = € — i
k=1

where W (s, z(s)) = V(s+tz—1,z(8) +&€x—1). Hence this, together with
Theorem 3.3, gives the desired result.

If we let ¢(t) = 0 in Corollary 3.4, we then have
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2

COROLLARY 3.5. Let a be a complex number with Rea > —%.

Let 0=ty <t1 < --- <tn=T. Then for £ = (£1,&2,--- , &) € R™,

T
E[exp{-—%a/; z%(s)ds} | z(te) = €k, kb = 1,2,--- ,n]

TVl —t) g G = Geer
Elx[(smhx/—(tk tk—l)) {z(tk"tk—l)}

e L -t g

2
COROLLARY 3.6. Let Rea > ——= and f € C. The function U

272
defined on R x [0,T] x R
(3.19)

Ue,ti o) = [ L2ShBE pq_v2

2r

(€ + &) coth Vat + f;fj‘lt}

- exp{aB(€ - &) / (S“iﬁ £ )a(s)ds)

, Ty a)g(s)q(r)dsdr}

is the solution of the pa.rt1a1 differential equation

(3.20) %’tj = %%25 - -g U + afg(t)U

satisfying the condition U(§, t;&) — 6(€ — o) as t | 0.
Proof. From a theorem of Kac[4], the function
o [t t
U(e 60 =Elexpl =5 [ () + a8 [ ae)als)ds}le(0) = &,
0 0
(6 - 60)}
t

1
X t = o r— —
(t) =€) el
is the solution of the differential equation (3.20). So by Theorem 3.3,
the function U(€,t;&o)1in the corollary is the solution of the differential
equation (3.20).
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