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A CLASS OF CONDITIONAL WIENER INTEGRALS

SEUNG JUN CHANG AND DONG MYUNG CHUNG

1. Introduction

Let (Co[O, T] ,B(Co[O, T]), m w ) denote Wiener space where Co [0, T]
is the space of all continuous functions x on [0, T] with x(O) = 0.
Many physical problem can be formulated in terms of the conditional
Wiener integral E[FIX] of the functional defined on Co [0, T] of the
form

(1.1)
T

F(x) = exp{-1 V(x(t»dt}

where X(x) - x(T)and V is a sufficiently smooth function on R.
Indeed, it is known [see [3],[4],[7]] that the function U defined on R x
[O,T] x R by

1 (e-eo)2
U(e, t; eo) = ~exp{ - 2 }E[F(x(·) + eo)lx(t) = e - eo]

v21l"t t

is the Green's function for the partial differential equation

So it is of interest to obtain formulas for evaluating such condi­
tional Wiener integrals.

J.Yeh [8] derived several Fourier inversion formulas for conditional
Wiener integrals and then used the formulas to evaluate conditional
Wiener integrals. Recently, Park and Skoug ([5],[6]) obtained a simple
formula of another type for evaluating conditional Wiener and Yeh­
Wiener integrals. Chung and Kang [2] defined abstract Wiener space
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version of conditional Wiener integrals and then obtained evaluation
formulas for conditional abstract Wiener integral of various functions
which include some results given in [5],[6].

In this paper, we consider a class offunctions V of the form V(s, e) =

- ; e+ a{3q(s)e, where q E L 2 [0, T] and a, {3 are complex, and give

explicit formulas of the c0uditional Wiener integral of the functions F
of the form (1.1) for the class of V's.

2. Preliminaries

For the partition T = Tn = {tl' ..., t n } of [O,T] with °= to <
t 1 < ... < t n = T, let X.,. : 00[0,T] -+ Rn be defined ?y X.,.(x) =
(X(tl),'" ,x(tn )). Let B(Rn) be the q-algebra of Bore! sets in Rn.
Then a set of the type

I = {x E 0 0 [0, Tl: X.,.(x) E B} =X;I(B), BE B(Rn),

is called a Borel cylinder set. The collection F of such a set forms an
algebra of subsets of 0 0 [0, T]. It is well known that the set function
m w on F defined by

mw(I) = fa K(T,{)d(,

where

with t- (el,'" ,en) E Rn and eo = 0, is a probability measure and
thus mw is extended to the Bore! q-algebra B{Oo[O, T]) generated by
F.

Let F be a complex-valued (C-valued) integrablefunction on 00 [0, T].
Let F(X.,.) be the q-algebra generated by the set {X;I(B) : B E
B(Rn)}. Then, by the definition of conditional expectation, the con­
ditional expectation of F given by :F.,., written E[F/X.,.], is any real
valued F.,.-measurable function on 00[0,T] such that
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It is well known that there exists a Borel measurable and Pxr -integrable
function 'lJ on (Rn,B(Rn),px r ) such that E[FIXT ] = 'lJoXT andPxr

is the probability distribution of XTdefined by Pxr(A) = mw(X;l(A))
for A E B(Rn ). Following Yeh [8], the function 'lJ(0, written E[FIXT =
~, is called the conditional Wiener integral of F given X T •

For a given partition T = Tn of [0, T] and x E Co [0, T], define the
polygonal function [x] on [0, T] by

[x](t) = X(ti-I) + t - tj-l (x(tj) - x(tj-I)),
tj - tj-l

for t E [tj-I,tj),j = 1,'" ,no Likewise, for each {= (6,'" ,en) E

Rn, define the polygonal function [e) of (on [O,T] by

... t - tj-l
relet) = ei-l + tj _ tj-l (ej - ej-l),

for t E [tj_l,tj], j = 1"" ,n, and eo = 0.
The following theorem, due to Park and Skoug [5], is a evaluation

formular for conditional Wiener integrals.

THEOREM 2.1. Let F be an integrable function on Co [0, T]. Then

for { ERn, 1
E[F(x)IXT(x) = el = F(x - [x] + [~)dmw(x).

Co[O,T]

We note that a real valued function Y on [0, T] x Co[0, T] defined
by

t
Y(t,x) == yet) = x(t) - Tx(T)

is a pinned Wiener process on (Co [0, T), B(Co[O, T)), mw) and [0, T]
with y(O) = °and yeT) == 0. This process {y(t),O $ t $ T} in­
duces the Gaussian measure, called the pinned Wiener measure mp,

on C8[O,T] = {x E Co[O,T]lx(T) == O}, which is uniquely determined
by mean function E[y(t)J = 0 for every t E [O,T] and covariance func-

tion E[y(s),y(t)) == min{s,t} - ~.
In the following theorem, we gives a convenient formula for evalu­

ating conditional Wiener integrals of the function involving quadratic
functional.
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THEOREM 2.2. Let F be an integrable function on Co[O,T]. Then
for 0< tl < T and e,6 ER,

E[F(x)lx(tl) =6,x(T) =e] = f F(y +g)dmp(y),
}og[O,T-td

t
where g(t) = T (e-6)+eh t E [O,T-tl].

-tl

In particular if tl = 0, then

E[F(x)lx(T) =e] =1 F(y + h)dmp(y),
08[0,71

t
where het) = T e, t E [0, T].

Proof. TJ1e proof easily follows from the fact that

E[F(·)lx(tl ) = ebx(T) = e] = E[F(x(.) +el)lx(T - tI) = e- ell,

Theorem 2.1, and the change of variable formula.

3. Main Theorem

Let k be the covariance function of the pinned Wiener process {Yet) :
t E [0, T], tha.t is, k is the function on [0, TJ x [0, TJ defined by

(3.1) k(s,t) =min{s,t} - ;.

Let A be the integral operator on £2[0, TJ (the space of real valued
square integra.ble function on [O,T]) defined by

T .

(3.2) AI(s) = 1 k(s, t)l(t)dt, 8 e [0, TJ, le "£2[0, T).

Then it can be shown that the orthonormal eigen-functions {en} of A
are given by

(3.3) en(S) =~sinC'; s)



(3.4)
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and the corresponding eigen-value {an} are given by

T 2

an=~.n1r

165

Further, it can be shown that {en} is a basis of L2 [0, T], and that A
is a trace class operator on L2[0, T]. The Karhunen - Loeve theorem
[1] shows that the Fourier series representation of the pinned Wiener
process {Yet) : t E [0, T]} is given by

(3.5)
00

yet) = L zne,,(t),
n=l

where z,,'s are orthogonal Gaussian random variables with E[zn] ­

°and
E[z~] = an.

LEMMA 3.1. .Fbra > 0, t E [0, T],

(3.6) ~ T cos(n1r) coshy'a(T - t) 1
L..i n21r2 + aT2 Tt = 2 l(isinh IQt - 2aT·n=l vu vu

Proof. To proof this lemma, we use a known result that

~ (_1)"cos(nz) = _1__ 1rcos(ax) , -?l" $ z $ 1r,

L..i n2 - a2 202 2asin(a2r)
"=1

where a is not an integer. H we let a = iy'aT/1r and x = 1r(T - t)/T,
then

~(-1)" 1r
2

mr-~t = 1r2cosh(y'a(T-t»_~
~ n21r2 + aT2 cos( T ). 2y'aTsinhy'aT 2aT2 .

Hence we obtain
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LEMMA 3.2. For a > 0, let

. 00

R(s,t,a) = L 1 an en(s)en(t), s,t E [O,T]
+aann:=l

where an and en are as in (3.3) and (3.4). Then

(3.7)
{

sinb..ja(T - t)sinh..jas

R
..jasinb..jaT'

s t a -
( , , ) - sinh..ja(T - s )sinb..jat

. ..jasinh..jaT '

s:5 t;

s ~ t.

Proof. Using,(3.3), (3.4) and Lemma 3.1 we have

R( ) T2 2. (n1r ) • (n1r )
s, t, a = n 21r2 +aT2 T sm T S sm Tt

T n1r n1r
= 2 2 T2 [COS[-T(s - t)] - cos[-T(s + t)]]

n 1r +a
1= 2..jasinh..jaT [coshy'Q(T -Is - tD) - coshy'a(T -Is + tD]

{

sinh,fa(T - t)sinh,fas s < t.
yTcisinh.JQT ' -,

= sinh,fa(T - s)sinh.JQt
,;;, r.:. ,s ~ t.yasinhyaT

THEOREM 3.3. Let F be a measurable function on Co [0, T] defined
by

1 iT iT .F(x) = exp{--a x2(s)ds + a{J q(s)x(s)ds},x E Co[O,T],
2 00



A class of conditional Wiener integrals

11'"2
wbere Reo> - 21'2' fJ E C, and q E L2[0, TJ. Tben for e,6 ER,

167

11'"2 1 T
Proof. We first note that for Rea > - 21'2 ' exp{ - 2a fo x 2

( s )ds} is

square Wiener integrable, and that for any z E C, exp{z It q(s )x(s )ds}
is square Wiener integrable. Hence F is Wiener integrable for Rea >

2-2;2 and any fJ E C. So F is conditional Wiener integrable for the

givenx(tI) = 6 andx(T) = e. By Theorem 2.2, we have, fore,6 ER

e-6
where g(t) = T t +6, t E [0, T - tl]. Hence the proceeding equals

- t 1
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where yet) = E~=l Znen(t) is the Fourier series representation of
function yin C8[0, T - tll as in (3.5), get) = E::l gnen(t), and
q(t + tl) = E~=! qnen(t). Since z~s are independent Gaussian ran-
dom variables with mean 0 and variance an, (3.8) equals .

where Wn = f3qn - gn. Hence the preceding equals

Using
00 2·.

II(1- _Z_) = ~,
n21r2 Z

n=!

we have

(3.10)
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Observing that

(3.11)

00 IT-tlIT-tlL 1 an q; = R(s,t,a)q(s + tl)q(t + tl)dsdt
n=1 + aan 0 0

(3.12)

00 IT-tlIT-tlL 1 an g~ = R(s,t,a)g(s)g(t)dsdt
n=1 +aan 0 0

(3.13)

00 IT-tllT-tlL 1 an qngn = R(s,t,a)q(s + tI)g(t)dsdt
n=1 + aan 0 0

169

(3.14)

(3.15)

00 f T - tl
~ gnqn = 10 g(t)q(t + tl)dt

00 f T - tl
~ g; = 10 g2(t)dt

and using Lemmas 3.1 and 3.2 with replacing T by T - tl, one can
show that

(3. 16)
2 00 00

a ~ an 2 1~ 2
2 LJ aa + 1gn - 2 LJ gn

n=1 n n=1

1 { r:. 2 2 r:. 2v'Q€6 (€ - 6)2 }=-"2 ya(€ +€dcothya(T-tI)- sinhya(T- t l) - T-t1
(3.17)

00 00

2 ~ an ~
- a (3 LJ 1 +aa gnqn + a{3 LJgnqn

n=1 n n=1

IT-t l sinh ,,;at 6
=a{3(€-6) 0 (sinhv'Q(T-tl) + €_6)q(t+tddt.

Putting (3.10),(3.11),(3.16) and (3.17) in the last equation in (3.9) we
obtain the desired result in the theorem.
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COLLOARY 3.4. Let a and F be as in Theorem 3.3. Let 0 = to <
tl < ... < tn = T. Then we have, for {= (6,6,'" ,en) E Rn

where to = 0, eo = 0 and R(s, t, a) is as in (3.7) with replacing T by
tk - tk-l.

Proof. Let V(s,e) = ae - 2a.f3q(s)e. Since the Wiener process
{x(s) : 0 :5 s ::; T} is additive, it can be shown that

where W(s,x(s)) = V(S+tk-l,X(S)+ek-I). Hence this, together with
Theorem 3.3, gives the desired result.

IT we let q(t) = 0 in Corollary 3.4, we then have
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11"2
COROLLARY 3.5. Let a be a complex number with Rea > - T2.

Let 0 = to < tl < ... < t n = T. Then for [= (6,6,··· ,en) ERn,

E[exp{-~a iT x2(s)ds} IX(tk) = ek, k = 1,2,··· ,n]

= IT [( .;a(tk - tk-d )!. exp{ ek - ek-l }
k:l sinh ..;a(tk - tk-l) 2(tk - tA:-l)

{ a+ eLl Co Co .;aekek-l}]
. exp - 2 yacothya(tk - tk-l) + . h J;;;( )

sm ya tk - tk-l

11"2
COROLLARY 3.6. Let Rea > - 21'2 and (3 E C. The function U

defined on R x [0, T] x R

(3.19)

. / ..;acsch..;at va 2 2 vaeeo
U(e, tj eo) = V 211" exp{-T(e + eo ) coth vat + sinh vat}

t sinhvas eo
. exp{a(3(e - eo) 10 (sinhvat + e_eo )q(s)ds}

a 2
(32 t t

.exp{-2-1o 10 R(s,r,a)q(s)q(r)dsdr}

is the solution of the partial diiferential equation

au 1 B2U a 2
(3.20) at = '2 ae - 2"e U + a(3q(t)U

satisfying the condition U(e, tj eo) -+ sce - eo) as t ! o.
Proof. From a theorem of Kac[4], the function

U(e, tj eo) =E[exp{- a
2 t x2(s)ds + a(3 t q(s)x(s)dx}lx(O) = eo,

2 10 10
x(t) = e]. ~exp{ (e; eo)}

y211"t t

is the solution of the differential equation (3.20). So by Theorem 3.3,
the function U(e, tj eo) in the corollary is the solution of the differential
equation (3.20).
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