Fixed Point Theorems in Product Spaces

  • Received : 1993.05.16
  • Published : 1993.06.30

Abstract

Let E and F be Banach spaces with $X{\subset}E$ and $Y{\subset}F$. Suppose that X is weakly compact, convex and has the fixed point property for a nonexpansive mapping, and Y has the fixed point property for a multivalued nonexpansive mapping. Then $(X{\oplus}Y)_p$, $1{\leq}$ P < ${\infty}$ has the fixed point property for a multi valued nonexpansive mapping. Furthermore, if X has the generic fixed point property for a nonexpansive mapping, then $(X{\oplus}Y)_{\infty}$ has the fixed point property for a multi valued nonexpansive mapping.

Keywords