Electrochemical Reduction of Thionyl Chloride : Catalytic Effects of Metalomacrocyclic Compounds

SOCl$_2$의 전기화학적 환원 : 금속-거대고리 화합물의 촉매효과

  • Woo-Seong Kim (Department of Chemistry, Chonnam National University) ;
  • Yong-Kook Choi (Department of Chemistry, Chonnam National University) ;
  • Chjo Ki-Hyung (Department of Chemistry, Chonnam National University)
  • 김우성 (전남대학교 자연과학대학 화학과) ;
  • 최용국 (전남대학교 자연과학대학 화학과) ;
  • 조기형 (전남대학교 자연과학대학 화학과)
  • Published : 1993.08.20

Abstract

Electrochemical reduction of thionyl chloride has been carried out at glassy carbon and microelectrode that modified by macrocyclic compounds. The catalyst molecules of macrocyclic compounds were adsorbed on the electrode surface and reduced thionyl chloride resulting in a generation of oxidized catalyst molecules. The concentration of catalysts and electrode immersion time were found to affect the catalyst performance strongly. Significant improvements in cell performance have been noted in terms of both exchange rate constants of up to 10 times and power densities of up to 220% at glassy carbon electrode. The diffusion coefficients obtained at carbon microelectrode were slightly different from that determined at glassy carbon electrode.

거대고리화합물의 유도체들은 촉매로 사용하여 유리질 탄소전극과 탄소 미소전극에서 SOCl$_2$의 전기화학적 환원반응을 조사하였다. 이들 유도체들은 먼저 전극표면에 흡착된 후 SOCl$_2$를 환원시켰다. 전해질 용액에 전극이 담기는 시간과 촉매들의 농도의 변화는 SOCl$_2$의 환원에 크게 영향을 미쳤다. 유리질 탄소 전극에서 촉매효과에 의한 속도상수는 10배 증가하였고, Power 밀도는 최고 220% 까지 증가하였다. 탄소 미소전극을 사용하여 시간전류법에 의해 얻은 확산계수는 유리질 탄소전극을 사용하여 순환전압전류법에 의해 얻은 결과와 다소 다른 값으로 나타났다.

Keywords

References

  1. J. Electrochem. Soc. v.120 J. J. Auborn;K. W. French;S. I. Lieberman;V. K. Shah;A. Heller
  2. J. Electrochem. Soc. v.120 W. K. Behl;J. A. Christopusous;M. Ramirez;S. Gilman
  3. Proc. 16th Power Sources Symp. v.26 J. J. Auborn;R. D. Bezman;K. W. French;A. Heller;S. I. Lieberman
  4. Proceedings of the 11th International Power Sources Symposium v.7 G. E. Blomgren;V. Z. Leger;M. L. Kronenberg;T. Kalnoki-Kis;R. J. Brodd;J. Thomson(ed.)
  5. Thin Solid Films v.43 A. N. Dey
  6. J. Electrochem. Soc. v.126 no.11 W. L. Borden;A. N. Dey
  7. J. Electrochem. Soc. v.127 no.7 W. L. Borden;A. N. Dey
  8. J. Electrochem. Soc. v.127 no.10 K. M. Abraham;R. M. Mank
  9. J. Electrochem. Soc. v.128 no.4 H. V. Vjenkatasethy;D. J. Saathoff
  10. J. Electrochem. Soc. v.129 no.8 W. K. Istone;R. J. Brodd
  11. J. Chem. Eng Data v.28 H. V. Venkatasetty;S. Szpak
  12. Sandia Report F. M. Delick;W. R. Cieslak
  13. J. Electrochem. Soc. v.135 no.5 F. W. Dampier;T. A. Cole
  14. Progress in Batteries and Solar Cells v.9 T. Nagaura;K. Tozawa
  15. J. Power Source v.35 O. A. Baturina(et al.)
  16. J. Power Source v.34 K. M. Abraham
  17. J. Electrochem. Soc. v.140 Y. K. Choi;B. S. Kim;S. M. Park
  18. Thesis, University of California W. S. Harris
  19. High Energy Batteries R. Jasinski
  20. J. Electrochem. Soc. v.86-12 N. Doddapaneni
  21. Inorg. Chem. v.4 Y. H. Weber;D. H. Busch
  22. J. Org. Chem. v.32 A. D. Adler;F. R. Longo;J. D. Finarelli;J. Goldmacher;J. Assour;L. Korsakoff
  23. J. Inorg. Nucl. Chem. v.32 A. D. Adler;F. R. Longo;F. Kamps;J. Kim
  24. Proceedings of the Symposium Lithium Batteries v.84-1 N. Doddapaneni
  25. J. Electrochem. Soc., Spring Meeting v.81-1 N. Doddapaneni
  26. J. Electrochem. Soc., Spring Meeting v.81-2 N. Doddapaneni
  27. Proceedings of the Symposium on Electrochem. Soc. v.84-12 N. Doddapaneni
  28. J. Electrochem. Soc. v.140 Y. K. Choi;B. S. Kim;S. M. Park
  29. Proc. 32nd Power Symp. N. Doddapaneni
  30. Inorg. Chem. v.29 P. A. Bernstein;A. B. P. Lever
  31. Electrochemical Methods A. J. Bard;L. R. Faulkner
  32. Anal. Chem. v.57 A. S. Baranski;W. R. Fawcett;C. M. Gilbert