Metal Complexes of Sulfur-Containing Ligands (II). Synthesis and Properties of Platinum(II) Complexes of Dithiocarbamates

황함유 리간드의 금속착물(II). 디티오카바메이트류의 백금(II) 착물의 합성과 성질

  • Chan-Woo Kim (Department of Chemical Education, Taegu University) ;
  • Chang-Su Kim (Department of Chemical Education, Taegu University)
  • 김찬우 (大邱大學校 師範大學 化學敎育科) ;
  • 김창수 (大邱大學校 師範大學 化學敎育科)
  • Published : 1993.08.20

Abstract

Reactions of [PtCl$_4$]$^{2-}$ with excess of dithiocarbamates in water lead to facile replacement of the chloro ligand by dithiocarbamato ligand to give [Pt(A)], [Pt(B)$_2$]Cl$_2$, [Pt(C)$_2$], and [Pt(D)(CH$_2$=CH$_2$)Cl]Cl. The complexes of platinum have been characterized by elemental analyses, infrared and UV-visible spectra, and conductivity measurements. Platinum(II)-dithiocarbamate complexes were soluble in polar solvents such as water, alcohol, acetone, dimethylformamide, and dimethylsulfoxide etc. The possible structure was proposed on the basis of elemental analyses and physical properties.

물에서 [PtCl$_4$]^{2-}$의 백금(II)에 결합된 클로로리간드를 디티오카바메이트로 치환시켜 [Pt(A)], [Pt(B)$_2$]Cl$_2$, [Pt(C)$_2$] 및 [Pt(D)(CH$_2$=CH$_2$)Cl]Cl를 합성하였다. 백금 착물은 원소분석, 적외선 및 자외선-가시광선 스펙트럼과 전도도 측정을 하여 이들의 성질을 조사하였따. 이들 백금(II)의 디티오카바메이트류 착물은 물, 알코올, 디메틸술폭시드 및 티메틸포름아미드와 같은 극성용매에 잘 녹았다. 이들 백금(II) 착물의 원소분석과 물리적 측정결과에서부터 그 가능한 구조를 제시하였다.

Keywords

References

  1. Int. J. Nucl. Med. Biol. v.8 P. M. Pojer;J. Baldas
  2. Proc. Natl. Acad. Sci. USA v.76 R. F. Borch;M. E. Pleaasants
  3. Cancer v.39 D. M. Hayes;E. Cvitkovic;R. B. Golbey
  4. Cancer v.39 E. Cvitkovic;J. Spaulding;J. Martin;W. Whitmore
  5. Structure and Bonding v.67 R. A. Bufman
  6. Inorg. Chem. v.29 A. M. Bond;R. Cotton;A. F. Hollenkamp
  7. J. Chem. Soc. Dalton Trans. J. M. C. Alison;T. A. Stephenson
  8. J. Chem. Soc. Dalton Trans. M. C. Cornock;T. A. Stephenson
  9. lnorg. Chem. v.8 J. P. Fackler, Jr.;W. C. Seidel
  10. Inorg. Chem. v.2 J. P. Fackler, Jr.;F. A. Cotton
  11. Inorg. Chem. v.17 I. J. B. Lin;H. W. Chen;J. P. Fackler, Jr.
  12. Inorg. Chem. v.16 J. P. Fackler, Jr.;I. J. B. Lin J. Andrews
  13. J. Chem. Soc. Dalton Trans. M. Bonamico;G. Dessy;V. Fares;L. Scaramuzza
  14. J. Inorg. Nucl. Chem. v.42 M. M. Jones;L. T. Burka;M. E. Hunter;M. Basinger;G. Campo;A. D. Weaver
  15. J. Chem. Soc. Dalton Trans. J. M. Martin;P. W. G. Newman;B. W. Robinson;A. H. White
  16. J. Chem. Soc. Dalton Trans. P. W. G. Newman;C. L. Raston;A. H. White
  17. J. Korean Chem. Soc. v.37 I. S. Kim;C. W. Kim;C. S. Kim
  18. J. Chem. Soc. Dalton Trans. C. L. Raston;A. H. White
  19. Inorg. Chem. v.21 L. T. Chan;T. P. Fackler, Jr.;A. F. Masters;W. H. Pan
  20. Infrared and Raman Spectra of Inorganics and Coordination Compounds K. Nakamoto
  21. Inorg. Chem. v.11 J. M. Burke;J. P. Fackler, Jr.
  22. J. Am. Chem. Soc. v.86 S. I. Shupack;E. Billig;R. J. H. Clark;R. Williams;H. B. Gray
  23. J. Am. Chem. Soc. v.71 C. J. Balhausen;A. D. Leihr
  24. J. Am. Chem. Soc. v.86 R. Eisenberg;J. A. Ibers;R. J. H. Clack;H. B. Gray
  25. Inorg. Chem. v.2 A. Davison;N. Edelstein;R. H. Holm;A. H. Maki
  26. Inorg. Chem. v.4 A. R. Latham;V. C. Hascall;H. B. Gray
  27. Inorg. Chem. v.10 R. Dingle
  28. Progress in Inorganic Chemistry v.11 D. Coucouvanis;S. J. Lippard(ed.)
  29. Progress in Inorganic Chemistry v.26 D. Coucouvanis;S. J. Lippard(ed.)