N,N-Dimethylformamide 용액 중에서 Zn(II)-Bilirubin 착물의 전기화학적 거동

Electrochemical Behavior of Zn(II)-Bilirubin Complex in N,N-Dimethylformamide

  • 배준웅 (경북대학교 자연과학대학 화학과) ;
  • 이흥락 (경북대학교 자연과학대학 화학과) ;
  • 박태명 (순천공업전문대학 환경공업과) ;
  • 서무룡 (경상대학교 자연과학대학 화학과)
  • Zun-Ung Bae (Department of Chemistry, Kyungpook National University) ;
  • Heung-Lark Lee (Department of Chemistry, Kyungpook National University) ;
  • Tae-Myung Park (Department of Environmental Engineering, Sooncheon Junior Technical College) ;
  • Moo-Lyong Seo (Department of Chemistry, Gyeongsang National University)
  • 발행 : 1993.07.20

초록

DMF 용액 중에서 zinc(II) 이온과 copper(II) 이온의 bilirubin과의 착물형성 여부를 조사하고 Zn(II)-bilirubin(이하 Zn(II)-BR로 줄임) 착물의 전기화학적 성질을 여러가지 전기화학적인 방법으로 조사하였다. Zn(II)는 DMF 용액 중에서 bilirubin과 착물을 형성하였으나, Cu(II)는 bilirubin과 착물을 형성하지 않고 오히려 bilirubin의 산화를 촉진시켰다. Zn-BR 착물은 3단계의 환원과정을 거치며, 제1파와 제2파의 환원전류는 반응성 전류가 약간 포함된 환산전류이었으며, 제3파의 환원전류는 확산지배적인 전류이었다.

The complexation of bilirubin with zinc(II) and copper(II) ions was studied spectrophotometrically. In the zinc(II)-bilirubin (Zn-BR) system, complex is formed, but the copper(II) ion oxidizes bilirubin to biliverdin and then to the further oxidation products. The electrochemical reduction behavior of ZN-BR complex has been investigated with DC polarography and cyclic voltammetry. The three polarographic waves were obtained for the reduction of ZN-BR complex in DMF solution. Thde reduction current of the third wave was diffusion current, but that of the first and the second waves contained a little kinetic current.

키워드

참고문헌

  1. Photochem. Photobiol. v.33 W. O. Smith
  2. Science v.235 R. Stocker;Y. Yamamoto;A. F. McDonagh;A. N. Glazer;B. N. Ames
  3. J. Am. Chem. Soc. v.107 D. A. Lightner;J. K. Gawronski;K. Gawronska
  4. J.C.S. Perkin II D. Kaplan;G. Navon
  5. J. Am. Chem. Soc. v.104 no.24 C. D. Tran;G. S. Beddard
  6. J. Biol. Chem. v.252 no.31 B. Honore
  7. J. Am. Chem. Soc. v.110 no.1 Y.-Z. Hsieh;M. D. Morris
  8. Acc. Chem. Res. v.17 D. A. Lightner;A. F. McDonagh
  9. J. Am. Chem. Soc. v.104 A. F. McDonagh;L. A. Palma
  10. Experientia v.46 J. M. Ribo;J. A. Farrera;J. Claret
  11. J. Electroanal. Chem. v.185 J. Wang;D. B. Luo;P. A. M. Farias
  12. Anal. Chem. v.60 F. Moussa;G. Kanoute;C. Herrenknecht;P.Levellain;F. Trivin
  13. Anal. Chimica Acta v.26 no.4 P. Longhi;P. Manitto;D. Monti;S. Rondini
  14. Clin. Chim. Acta v.74 no.1 G. M. McCullars;S. O'Reilly;M. Brennan
  15. Bioinorg. Chem. v.9 J. D. Van Norman;E. T. Yatski
  16. Inorg. Chim. Acta v.106 no.4 I. Sovago;B. Harman;I. Kolozsvari;F. Matyuska
  17. Bull. Korean Chem. Soc. v.11 Z. U. Bae;Y. T. Park;S. H. Lee;M. S. Song;M. S. Jung
  18. J. Korean Chem. Soc. v.34 Z. U. Bae;H. R. Lee;T. M. Park;K. H. Kim
  19. J. Korean Chem. Soc. v.35 Z. U. Bae;H. R. Lee;T. M. Park;M. S. Jung
  20. J. Biol. Chem. v.241 R. Flitman;M. H. Worth
  21. Biochem. J. v.130 C. C. Kuenzle;R. R. Pelloniand;M. H. Weibel
  22. Biochem. J. v.133 D. W. Hutchinson;B. Johson;A. J. Knell
  23. Clin. Chem. v.17 R. A. Velapoldi;O. Menis
  24. Anal. Chem. v.46 no.11 J. D. Van Norman;R. Szentirmay
  25. J. Am. Chem. Soc. v.79 A. B. Thomas;E. G. Rochow
  26. J. Am. Chem. Soc. v.79 I. M. Kolthoff;J. F. Coetzee
  27. Anal. Chem. v.43 no.6 W. Meinke
  28. Bioinorg. Chem. v.4 J. D. Van Norman;R. Szentirmay
  29. Anal. Chem. v.45 J. D. Van Norman
  30. Anal. Chem. v.26 B. Zak;N. Moss;A. Boyle;A. Zlatkis
  31. Anal. Chem. v.46 no.7 J. D. Van Norman;M. M. Humans
  32. Organic Polarographic Analysis P. Zuman
  33. Polarographic Techniques I. M. Kolthoff
  34. Anal. Chem. v.36 R. S. Nicholson;I. Shain