Electrochemical Behavior of Zn(II)-Bilirubin Complex in N,N-Dimethylformamide

N,N-Dimethylformamide 용액 중에서 Zn(II)-Bilirubin 착물의 전기화학적 거동

  • Zun-Ung Bae (Department of Chemistry, Kyungpook National University) ;
  • Heung-Lark Lee (Department of Chemistry, Kyungpook National University) ;
  • Tae-Myung Park (Department of Environmental Engineering, Sooncheon Junior Technical College) ;
  • Moo-Lyong Seo (Department of Chemistry, Gyeongsang National University)
  • 배준웅 (경북대학교 자연과학대학 화학과) ;
  • 이흥락 (경북대학교 자연과학대학 화학과) ;
  • 박태명 (순천공업전문대학 환경공업과) ;
  • 서무룡 (경상대학교 자연과학대학 화학과)
  • Published : 1993.07.20

Abstract

The complexation of bilirubin with zinc(II) and copper(II) ions was studied spectrophotometrically. In the zinc(II)-bilirubin (Zn-BR) system, complex is formed, but the copper(II) ion oxidizes bilirubin to biliverdin and then to the further oxidation products. The electrochemical reduction behavior of ZN-BR complex has been investigated with DC polarography and cyclic voltammetry. The three polarographic waves were obtained for the reduction of ZN-BR complex in DMF solution. Thde reduction current of the third wave was diffusion current, but that of the first and the second waves contained a little kinetic current.

DMF 용액 중에서 zinc(II) 이온과 copper(II) 이온의 bilirubin과의 착물형성 여부를 조사하고 Zn(II)-bilirubin(이하 Zn(II)-BR로 줄임) 착물의 전기화학적 성질을 여러가지 전기화학적인 방법으로 조사하였다. Zn(II)는 DMF 용액 중에서 bilirubin과 착물을 형성하였으나, Cu(II)는 bilirubin과 착물을 형성하지 않고 오히려 bilirubin의 산화를 촉진시켰다. Zn-BR 착물은 3단계의 환원과정을 거치며, 제1파와 제2파의 환원전류는 반응성 전류가 약간 포함된 환산전류이었으며, 제3파의 환원전류는 확산지배적인 전류이었다.

Keywords

References

  1. Photochem. Photobiol. v.33 W. O. Smith
  2. Science v.235 R. Stocker;Y. Yamamoto;A. F. McDonagh;A. N. Glazer;B. N. Ames
  3. J. Am. Chem. Soc. v.107 D. A. Lightner;J. K. Gawronski;K. Gawronska
  4. J.C.S. Perkin II D. Kaplan;G. Navon
  5. J. Am. Chem. Soc. v.104 no.24 C. D. Tran;G. S. Beddard
  6. J. Biol. Chem. v.252 no.31 B. Honore
  7. J. Am. Chem. Soc. v.110 no.1 Y.-Z. Hsieh;M. D. Morris
  8. Acc. Chem. Res. v.17 D. A. Lightner;A. F. McDonagh
  9. J. Am. Chem. Soc. v.104 A. F. McDonagh;L. A. Palma
  10. Experientia v.46 J. M. Ribo;J. A. Farrera;J. Claret
  11. J. Electroanal. Chem. v.185 J. Wang;D. B. Luo;P. A. M. Farias
  12. Anal. Chem. v.60 F. Moussa;G. Kanoute;C. Herrenknecht;P.Levellain;F. Trivin
  13. Anal. Chimica Acta v.26 no.4 P. Longhi;P. Manitto;D. Monti;S. Rondini
  14. Clin. Chim. Acta v.74 no.1 G. M. McCullars;S. O'Reilly;M. Brennan
  15. Bioinorg. Chem. v.9 J. D. Van Norman;E. T. Yatski
  16. Inorg. Chim. Acta v.106 no.4 I. Sovago;B. Harman;I. Kolozsvari;F. Matyuska
  17. Bull. Korean Chem. Soc. v.11 Z. U. Bae;Y. T. Park;S. H. Lee;M. S. Song;M. S. Jung
  18. J. Korean Chem. Soc. v.34 Z. U. Bae;H. R. Lee;T. M. Park;K. H. Kim
  19. J. Korean Chem. Soc. v.35 Z. U. Bae;H. R. Lee;T. M. Park;M. S. Jung
  20. J. Biol. Chem. v.241 R. Flitman;M. H. Worth
  21. Biochem. J. v.130 C. C. Kuenzle;R. R. Pelloniand;M. H. Weibel
  22. Biochem. J. v.133 D. W. Hutchinson;B. Johson;A. J. Knell
  23. Clin. Chem. v.17 R. A. Velapoldi;O. Menis
  24. Anal. Chem. v.46 no.11 J. D. Van Norman;R. Szentirmay
  25. J. Am. Chem. Soc. v.79 A. B. Thomas;E. G. Rochow
  26. J. Am. Chem. Soc. v.79 I. M. Kolthoff;J. F. Coetzee
  27. Anal. Chem. v.43 no.6 W. Meinke
  28. Bioinorg. Chem. v.4 J. D. Van Norman;R. Szentirmay
  29. Anal. Chem. v.45 J. D. Van Norman
  30. Anal. Chem. v.26 B. Zak;N. Moss;A. Boyle;A. Zlatkis
  31. Anal. Chem. v.46 no.7 J. D. Van Norman;M. M. Humans
  32. Organic Polarographic Analysis P. Zuman
  33. Polarographic Techniques I. M. Kolthoff
  34. Anal. Chem. v.36 R. S. Nicholson;I. Shain