Thermodynamics on the Mixed Micellar Formation of Dimethyldodecylamine Oxide in Water/n-Propanol

Dimethyldodecylamine Oxide 의 물/n-프로판올 용매에서 혼합미셸 형성에 관한 열역학적 연구

  • Published : 1993.06.20

Abstract

The pseudophase separation model is used to describe the effects of pH and n-propanol on the mixed micellar formation of protonated and unprotonated dimethyldodecylamine oxides. Dimethyl-dodecylamine oxide surfactant molecules may exist in aqueous solution in either nonionic (unprotonated) or cationic (protonated) form, and they can be modeled thermodynamically as a binary mixture of cationic and nonionic surfactants. The composition of the binary mixture is varied by adjusting the solution pH. And activities, micellar compositions, and monomeric compositions of two surfactant species can be calculated directly from the experimental titration data by applying pseudophase separation model to the micellar system of DDAO in water/n-propanol. The critical micellar concentrations and the p$K_a$ values of the binary mixture systems are dependent on the micellar composition of the protonated cationic surfactant (X); especially they show the minimum phenomena when they are plotted against the micellar composition of the protonated cationic surfactant (X). The critical micellar concentration of the binary mixed DDAO system is generally decreased when n-propanol is added to the binary mixture system, and the degree of decrease is dependent on the concentration of n-propanol.

Dimethyldodecylamine Oxide(DDAO)의 미셀화에 대한 pH 효과와 n-프로판올 효과를 조사하기위하여 유사상태분리모델(pseudophase separation model)을 이용하였다. DDAO는 양성자화된 양이온 계면활성제와 비산성화된 중성 계면활성제 두 종류로 존재할 수 있으며, 이들은 열역학적으로 이성분 혼합메셀을 형성할 수 있다. 각 성분의 조성은 용액의 pH에 따라 달라지며, 각 종류 계면활성제들의 활동도, 미셀상태의 조성, 단량체상태의 조성 및 pH에 따른 임계미셀농도를 유사상태분리이론을 이용하여 실험적인 DDAO의 적정곡선으로부터 계산하였다. 임계미셀농도와 DDAO의 산-염기 해리평형상수($K_a$)는 미셀상태의 조성에 따라 변하였으며, 이들은 pH가 5인 지점에서 최소점 현상을 보이고 있다. 그리고 n-프로판올을 첨가하므로써 DDAO의 임계미셀농도는 감소하였으며, n-프로판올의 농도가 증가할수록 임계미셀농도는 더욱 감소하였다.

Keywords

References

  1. Langmuir v.8 Y. J. Nikas;S. Puvvada;D. Blankschtein
  2. J. C. S. Faraday I v.71 J. H. Clint
  3. Bull. Chem. Soc. Jpn. v.56 K. Meguro;Y. Tabata;N. Fujimoto;K. Esumi
  4. J. Phys. Chem. v.84 N. Funasaki;S. Hada
  5. Langmuir v.7 S. Miyagishi;M. Higashide;T. Asakawa;M. Nishida
  6. Langmuir v.8 W. Guo;E. K. Guzman;S. D. Heavin;Z. Li;B. M. Fung;S. D. Christian
  7. Langmuir v.8 C. Samoria;S. Puvvada;D. Blankschtein
  8. J. Phys. Chem. v.70 F. Tokiwa;K. Ohki
  9. Langmuir v.7 H. Zhang;P. L. Dubin;J. I. Kaplan
  10. J. Phys. Chem. v.71 M. A. Hamdiyyah;K. J. Mysels
  11. J. Phys. Chem. v.66 K. W. Herman
  12. J. Phys. Chem. v.68 K. W. Herman
  13. Langmuir v.8 J. C. Brackman;J. B. N. Engberts
  14. Langmuir v.6 J. F. Rathamn;D. S. Christian
  15. J. Phys. Chem. v.87 P. M. Holland;D. N. Rubingh
  16. Langmuir v.6 M. Valiente;E. Rodenas
  17. Langmuir v.7 D. G. Marangoni;J. C. T. Kwak
  18. J. Colloid Interface Sci. v.81 M. J. Mille
  19. J. Phys. Chem. v.71 F. Tokiwa;K. Ohki
  20. Surfactnats in Solution T. Imae;S. Ikeda;K. L. Mittal(ed.)
  21. J. Phys. Chem. v.96 C. Bravo;J. R. Leis;M. E. Pena
  22. J. Phys. Chem. v.91 J. Kibblewhite;C. J. Drummond;F. Grieser;T. W. Healy