Semiempirical Calculations of Hyperpolarizabilities for Quinoline Derivatives

Quinoline계 분자의 초분극률에 관한 반경험적 계산

  • Ryu Ungsik (Polymer Chemistry Laboratory, Korea Institute of Science and Technology) ;
  • Choi Donghoon (Polymer Chemistry Laboratory, Korea Institute of Science and Technology) ;
  • Kim Nakjoong (Polymer Chemistry Laboratory, Korea Institute of Science and Technology) ;
  • Lee Yoon Sup (Department of Chemistry and Center for Molecular Science, Korea Advanced Institute of Science and Technology)
  • 류웅식 (한국과학기술연구원 고분자설계연구실) ;
  • 최동훈 (한국과학기술연구원 고분자설계연구실) ;
  • 김낙중 (한국과학기술연구원 고분자설계연구실) ;
  • 이윤섭 (한국과학기술원 화학과 및 분자과학연구센터)
  • Published : 1993.01.20

Abstract

The microscopic origin of nonlinear optical properties of quinoline derivatives have been investigated theoretically using MOPAC-AM1 method. In order to prepare promising nonlinear optical active polymers of polyquinoline derivatives, the optimized positions of strong electron donor and electron acceptor are determined in the heterocyclic ring for the energetically favorable structures. For each compound, the effect of the substituted positions on the microscopic nonlinear coefficients were investigated. Polyquinoline was already evaluated to have outstanding physical and mechanical properties so that its monomeric analogues were designed and synthesized for developing new second and third order nonlinear optical main chain polymers. Using the MOPAC-AM1 method, properties calculated include the intrinsic ground-state dipole moments, the polarizabilities, first and second hyperpolarizabilities under the condition of finite-field $(\omega$ = 0).

Quinoline계 화합물인 미시적 비선형 광학 특성을 설명하기 위해 반경험적인 AMI 방법을 사용하여 초분극률을 계사하였다. Quinoline 고리에서 이차 비선형 특성에 기여하는 전자공여체, 아미노기와 전자수여체, 니트로기의 반응 위치를 변경하여 미시적 비선형 상수에 대한 이론적 영향을 조사해 보았다. 이차와 삼차 비선형 주쇄고분자로서 물리적, 기계적 성질이 우수한 polyquinoline계 고분자를 이용하기 이해 polyquinoline계 반복단위와 유사한 단분자 quinoline들을 설계하여 각각의 미시적 비선형 상수 및 바닥상태의 쌍극자 모멘트 등을 유한 전기장하에서 계산하여 서로 평가 비교해 보았다.

Keywords

References

  1. Laser Focus v.18 A. F. Garito;K. D. Singer
  2. Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symposium Series D. J. Williams(ed.)
  3. Mol. Cryst. Liq. Cryst. v.106 A. F. Garito;C. C. Teng;K. Y. Wong;O. Zamani-Khamiri
  4. Angew. Chem. Intl. ed. Eng. v.23 D. J. Williams
  5. J. Mol. Electron. v.1 J. Zyss
  6. Macromolecules v.20 C. Ye;T. J. Marks;J. Yang;G. K. Wong
  7. Appl. Phys. Lett. v.53 K. D. Singer;M. G. Kuzyk;W. R. Holland;J. E. Sohn;S. J. Lalama;R. B. Comizzoli;H. E. Katz;M. L. Schilling
  8. Makromol. Chem. Rapid. Comm. v.10 M. Yoshida;M. Asemo;M. Tamada;M. Kumakura
  9. Macromolecules v.15 G. R. Meredith;J. G. VanDusen;D. J. Williams
  10. Eur. Pat. 0 294 706 R. N. De Martino
  11. Mol. Cryst. Liq. Cryst. v.118 F. E. Karasz;J. D. Capistran;D. R. Gagnon;R. W. Lenz
  12. Polymer v.31 S. Tokito;T. Mormii;H. Murata;T. Tsutsui;S. Saito
  13. J. Polym. Sci. Poly. Lett. ed. v.24 S. Antoun;D. R. Gagnon;F. E. Karasz;R. W. Lenz
  14. J. Am. Chem. Soc. v.107 M. J. S. Dewar;E. Z. Zoebisch;E. F. Healy;J. J. P. Stewart
  15. MOPAC MANUAL (V6.0) M. B. Coolidge;J. J. P. Stewart
  16. J. Phys. Chem. v.96 N. Matsuzawa;D. A. Dixon