Kinetics of the Solvolysis of 1-Adamantyl Fluoroformate under High Pressure

고압하에서 1-Adamantyl Fluoroformate의 가용매분해반응에 대한 속도론적 연구

  • Kyong Jin Burm (Department of Chemistry, Hanyang University) ;
  • Dennis N. Kevill (Dept. of Chemistry, Northern Illinois University) ;
  • Kim Jong Chul (Department of Chemistry, Hanyang University)
  • Published : 1993.01.20

Abstract

Specific rates of solvolysis of 1-adamantyl fluoroformate in hydroxylic solvents have been measured by an electric conductivity method under various pressures. The activation parameters (${\Delta}V^{\neq}{_o},\;{\Delta}{\beta}^{\neq},\;{Delta}H^{\neq},\;{Delta}S^{\neq}$,/TEX>) and average pressure within the solvation-shell of activated complex (charge development) have been estimated from the rates. Also, the selectivities for the formation of solvolysis products in aqueous ethanol have been determined by response-calibrated GC. The values of ${\Delta}V^{\neq}{_o},\;and\;{\Delta}{\beta}^{\neq}$ are both negative, but ${Delta}H^{\neq}$ is positive and ${Delta}S^{\neq}$, is large negative. This behavior is discussed in terms of electrostriction of solvation. From these results, it could be postulated that the solvolysis of 1-adamantyl fluoroformate have two major reaction pathway.

메탄올 및 에탄올 수용액내에서 1-adamantyl fluoroformate의 가용매분해반응속도를 여러 압력하에서 전도도방법을 이용하여 측정하였다. 이들 속도상수로부터 활성화부피(${\Delta}V^{\neq}{_o}$), 활성화압축율계수(${\Delta}{\beta}^{\neq}$), 활성화엔탈피(${Delta}H^{\neq}$), 활성화엔트로피(${Delta}S^{\neq}$), 그리고 활성화 착물에서의 charge development(△P)를 구하였다. 또한 에탄올 수용액내에서 가용매분해반응으로 인한 생성물에 대한 selectivity를 GC를 이용하여 측정하였다. 그 결과 ${\Delta}V^{\neq}{_o}$${\Delta}{\beta}^{\neq}$의 값은 모두 음의 값을 ${Delta}H^{\neq}$는 양의 값을 ${Delta}S^{\neq}$은 큰 음의 값을 얻었다. 이 현상을 용매구조변화에 대하여 논의하였다. 이들 결과로부터 본 반응은 acyl carbon을 공격하는 이분자성반응과 가용매분해과정(S-D)인 용매-분리이온쌍반응으로 추정할 수가 있었다.

Keywords

References

  1. Department of chemistry, Northern Illinois University
  2. J. Chem. Soc. E. D. Hughes;C. K. Ingold
  3. Solvoltic displacement reaction A. Streitwieser Jr.
  4. Acta. Chem. Scand. v.19 A. Kivinen
  5. Can. J. Chem. v.45 A. Queen
  6. Thye chemistry of acyl halides D. N. Kevill;S. Patai(ed.)
  7. J. Am. Chem. Soc. v.95 D. A. da Roza;L. J. Andrews;R. M. Keefer
  8. J. Am. Chem. Soc. v.70 E. Grunwald;S. Winstein
  9. J. Am. Chem. Soc. v.73 S. Winstein;E. Grunwald;H. W. Janes
  10. J. Am. Chem. Soc. v.79 A. H. Fainberg;S. Winstein
  11. J. Am. Chem. Soc. v.98 T. W. Bentley;P. V. R. Schleyer
  12. J. Am. Chem. Soc. v.98 F. L. Schadt;T. W. Bentley;P. V. R. Schleyer
  13. J. Am. Chem. Soc. v.103 T. W. Bentley;C. T. Bowen;D. H. Morten;P. V. R. Schleyer
  14. J. Am. Chem. Soc. v.104 T. W. Bentley;G. E. Carter
  15. J. Org. Chem. v.55 D. N. Kevill;J. B. Kyong;F. L. Weitl
  16. The physics of high pressure P. W. Bridgman
  17. Trans. Faraday Soc. v.49 J. Buchnan;S. D. Hamann
  18. Bull. Chem. Soc. Japan v.46 A. Sera;C. Tamagami;K. Maruyama
  19. Bull. Chem. Soc. Japan v.47 A. Sera;C. Tamagami;K. Maruyama
  20. Bull. Chem. Soc. Japan v.47 A. Sera;C. Tamagami;K. Maruyama
  21. J. Chem. Rev. v.78 T. Asano;W. J. le Noble
  22. J. Chem. Rev. v.89 R. V. Eldile;T. Asano;W. J. le Noble
  23. Hoppe Seyler's Z. Physiol. Chem. v.357 L. Moroder;L. Wackerle;E. Wunsch
  24. J. Am. Chem. Soc. v.92 D. N. Kevill;K. C. Kolwyck;F. L. Weitl
  25. J. Chem. Soc., Perkin Trans. v.1 D. N. Kevill;F. L. Weitl
  26. J. Org. Chem. v.30 R. C. Fort Jr.;P. V. R. Schleyer
  27. J. Org. Chem., USSR (English Ed.) v.2 F. N. Stepanov;Y. I. Srebrodol'skii
  28. Bull. Korean Chem. Soc. v.6 O. C. Kwun;J. B. Kyong
  29. Phil. Mag. v.2 E. A. Guggenheim
  30. J. Am. Chem. Soc. v.84 S. W. Benson;J. A. Berson
  31. Adv. Phys. Org. Chem. v.2 E. Whalley
  32. Can. J. Soc. v.44 A. S. Golinkin;W. G. Laidlaw;J. B. Hyne
  33. High pressure chemistry H. Kelm
  34. Bull. Chem. Soc. Japan v.40 Y. Kondo;H. Tojima;N. Tokura
  35. Bull. Chem. Soc. Japan v.45 Y. Kondo;H. Tojima;N. Tokura
  36. Bull. Chem. Soc. Japan v.46 Y. Kondo;H. Tojima;N. Tokura
  37. J. Am. Chem. Soc. v.96 J. M. Harris;D. c. Clark;A. Becker;J. F. Fagan
  38. J. Chem. Soc., Perkin Trans. v.2 A. Pross;Y. Karton
  39. Chem. Rev. v.63 P. R. Wells
  40. J. Am. Chem. Soc. v.102 Kaspi;Z. Rappoport
  41. Tetrahedron Lett. v.27 S. P. McManus;S. E. Zutaut
  42. Tetrahedron Lett. T. Ando;S. Tsukamoto
  43. J. Chem. Soc., Perkin Trans. v.2 T. W. Bentley;I. S. Koo
  44. J. Org. Chem. v.56 D. N. Kevill;S. W. Anderson
  45. Lipuid phase high pressure chemistry N. S. Issacs
  46. Tans. Faraday Soc. v.31 M. G. Evans;M. Polanyi
  47. J. Am. Chem. Soc. v.89 W. J. le Noble;B. L. Yates;A. W. Scaplehorn
  48. Int. J. Chem. Kinet. v.1 K. J. Laidler;R. Martin
  49. Chem. Comm. D. N. Kevill
  50. Trans. Faraday Soc. v.64 D. A. Lown;H. R. Thirsh;L. W. Jomes
  51. J. Korean Chem. Soc. v.32 K. J. Choi;Y. H. Lee;J. B. Kyong;J. R. Kim
  52. J. Korean Chem. Soc. v.30 J. B. Kyong(et al.)
  53. J. Chem. Soc. D. A. Brown;R. F. Hudson
  54. Ber. Bunsenges. Physic. Chem. v.68 R. F. Hudson