The Study for Diffusion Mechanism of Amino Acids Through Poly(2-Hydroxyethyl Methacrylate) Membrane

Poly(2-Hydroxyethyl Methacrylate)막을 통한 아미노산의 확산 기구에 관한 연구

  • Kim Ui-Rak (Department of Chemistry, Keimyung University) ;
  • Jeong Bong-Jin (Department of Chemistry, Keimyung University) ;
  • Lee Myung-Jae (Department of Chemistry, Catholic Medical College) ;
  • Min Kyung-Sub (Department of Chemistry, Keimyung University)
  • 김의락 (계명대학교 자연과학부 화학과) ;
  • 정봉진 (계명대학교 자연과학대학 화학과) ;
  • 이명재 (가톨릭대학교 의과대학 자연과학교실 화학과) ;
  • 민경섭 (계명대학교 자연과학대학 화학과)
  • Published : 1993.01.20

Abstract

The transport phenomena of ten amino acid molecules through poly(2-hydroxyethyl methacrylate), P(HEMA) membrane have been investigated in various range pH solutions. It is found that the permeability and diffusivity of the amino acids through membrane depended on the different shape, size and the charge of them are changed by the pH. The permeabilities and diffusivities of amino acids have the largest value in the neutral solution. In this case, they are diffused through free water in the P(HEMA) membrane and the diffusion mechanism is the pore type. The basic solution have larger value than the acidic it. Whether the diffusion mechanism of the core type or the partition type, it is depended on the effect of side chain of the amino acid in basic and acidic solution.

2-hydroxyethyl methacrylate(HEMA)을 중합한 P(HEMA)막을 통하여 10가지 아미노산들의 확산계수, 분배계수 및 투과도를 용액의 pH 변화하에서 조사 연구하였다. 아미노산의 투과도는 각 아미노산들의 분자형태, 분자크기 및 전하량에 따라 다른 값을 나타냄을 확인하였으며, 특히 용액의 pH에 따라 전하량이 변화하는 각 아미노산은 P(HEMA)막을 통하여 투과시킬 때 모든 아미노산이 중성영역용액에서 가장 많이 투과되고 이때 막은 미세공막으로 작용하며, 염기성영역용액에는 산성영역용액보다 더 많이 투과되고 막은 분배막으로 작용함을 알았다.

Keywords

References

  1. Nature v.185 O. Wichterle;D. Lim
  2. J. Biomed. Mater. Res. v.3 M. F. Refojo
  3. J. Biomet. Mater. Res. v.3 M. Tollar;M. Stol;K. Kliment
  4. J. Biomed. Mater. Res. v.5 I. Michevic;K. Kliment
  5. J. Biomed. Mater. Res. v.5 S. M. Lagarus;J. N. Laguerre;H. K. Sidney
  6. J. Biomed. Mater. Res. v.9 D. G. Murray;J. S. Dow
  7. ACS Symposium Series, 31 Hydrogels for Medical and Related Application B. D. Ratner;A. S. Hoffman;J. D. Andrade(ed.)
  8. Trans. Am. Soc. Artif. Int. Organs. v.22 P. Nathan;E. J. Law;B. G. MacMillan;D. F. Murphy;S. H. Ronel;M. J. D'Andrea;R. A. Abrahams
  9. Survey of Opthamology v.16 M. F. Refojo
  10. J. Biomed. Mater. Res. v.7 M. S. Jhon;J. D. Andrade
  11. J. Biomed. Mater. Res. v.7 E. D. Ratner;I. F. Miller
  12. J. Bioeng. v.2 K. H. Lee;J. G. Lee;M. S. Jhon;T. K. Lee
  13. ACS Symposium Series Water in Polymers S. W. Kim;J. R. Cardinal;S. Wisniewski;G. M. Zentner;S. P. Rowland(ed.)
  14. J. Appl. Poly. Sci. v.32 A. Higuchi;T. Ijima
  15. Polmer(Korea) v.15 Y. M. Park;U. S. Kim;Y. K. Sung
  16. J. Polym. Sci. v.10 B. D. Ratner;I. F. Miller
  17. J. Org. Chem. v.30 G. A. Mortimer
  18. J. Appl. Polymer Sci. v.9 M. F. Refojo;H. Yasuda
  19. Master's Thesis, Dept of Materials Science and Engineering, Univ. of Utah M. Y. Mah
  20. Anneal Report, Contract NIH 70-2017 Research on New Synthetic Membranes for the Dialysis of Blood D. J. Lyman
  21. CRC Hand Book of Chemistry and Physics(70th ed) Weast, R. C.(ed.)
  22. Principles of Biochemistry A. L. Lehninger
  23. J. Phys. Chem. v.82 F. J. Millero;A. L. Surdo;C. Shin
  24. J. Am. Chem. Soc. v.84 C. Tanford
  25. J. Biol. Chem. v.246 Y. Nozaki;C. Tanford
  26. J. Indian Chem. Soc. v.62 M. M. Bhattacharya;M. Sengupta
  27. J. Polym. Sci. v.10 no.5A M. Refojo
  28. Hydrogels, in Encyclopedia of Polymer Sience and Technology v.15 O. Wichterle
  29. Principle of Polymer Chemistry P. J. Flory
  30. J. Polym. Sci. v.62 T. Alfrey, Jr.;W. G. Lloyd
  31. Arch. Biochemn Biophy. v.56 L. Fridhandler;J. H. Qusstel