Trimethylaluminum (TMA), $NH_3$ 및 TMA :$NH_3$Adduct의 열분해 반응에 대한 in-situ FTIR 분광학적 연구

In-situ Fourier Transform Infrared Spectroscopic Study during Thermolysis of Trimethylaluminum and its Adduct

  • 김향숙 (한국화학연구원 고체화학실) ;
  • 김성한 (한국화학연구원 고체화학실) ;
  • 황진수 (한국화학연구원 고체화학연구실) ;
  • 최중길 (연세대학교 이과대학 화학과) ;
  • 정필조 (한국화학연구원 고체화학실)
  • Hyang Sook Kim (Solid State Chemsitry Lab., Korea Research Institute of Chemical Technology) ;
  • Seong Han Kim (Solid State Chemsitry Lab., Korea Research Institute of Chemical Technology) ;
  • Jin Soo Hwang (Solid State Chemsitry Lab., Korea Research Institute of Chemical Technology) ;
  • Joong Gill Choi (Department of Chemistry, Yonsei University) ;
  • Paul Joe Chong (Solid State Chemsitry Lab., Korea Research Institute of Chemical Technology)
  • 발행 : 1993.12.20

초록

TMA와 $NH_3$와의 기상 열분해 반응을 in-situ FTIR 분광법으로 관찰하였다. 사용한 spectroscopic reaction cell은 stainless-steel제로 자체 제작한 hexagonal-port chamber로서 2개의 NaCl window를 평행하게 설치하여 1100$^{\circ}C$까지 가열할 수 있으며 또한 이와 같은 높은 온도에서 분광분석이 가능하였다. TMA와 $NH_3$는 혼합 즉시 반응하여 TMA:$NH_3$adduct를 생성하였으며, 500$^{\circ}C$에서그 adduct가 완전분해됨을 FTIR로 확인하였다. TMA와 TMA:$NH_3$adduct의 열분해는 주생성물로$CH_4$을 방출하였다. 기상의 TMA,$NH_3$ 및 TMA:$NH_3$ adduct에 대하여 상온에서 관찰한 IR band들은 문헌값과 대조하여 assign하였다. TMA의 열분해에 대한 kinetic data로부터 이 반응이 1차식으로 일어남을 알 수 있었다.

The thermal decomposition of trimethylaluminum (TMA) with ammonia has been investigated by in-situ Fourier transform infrared spectroscopy. The spectroscopic reaction cell, which permits heating interna lly up to 1100$^{\circ}C$, consists of stainless-steel hexagonal-port chamber containing two NaCl windows installed in parallel. In this work, the stoichiometric reaction between TMA and $NH_3$ is found to be completed immediately after mixing. FTIR spectra observed in the range of temperature 25∼1100$^{\circ}C$ show that TMA and TMA : $NH_3$ adduct decompose into methane as a predominant product around 500$^{\circ}C$. The assignments of the IR bands due to the gaseous TMA, $NH_3$ and TMA : $NH_3$ adduct are attempted on the basis of the published data. Furthermore, the decomposition of TMA can be described as a first-order reaction. Kinetic data about the decompositon of TMA and TMA : $NH_3$adduct will also be discussed.

키워드

참고문헌

  1. J. Electrochem. Soc. v.118 H. M. Manasevit;F. M. Erdmann;W. I. Simpson
  2. Comm. Chem. Dept. Bulg. Acad. Sci. v.11 A. Tempel;W. Seifert;U. Walter;C. Nagel;H. Neels
  3. Thin Solid Films v.129 S. Zembutsu;M. Kobayashi
  4. MRS Symp. Proc. v.158 A. Kobayashi;T. Asai;S. Kawai;P. J. Chong
  5. J. Mater. Chem. v.3 no.4 S. S. Lee;S. M. Park;P. J. Chong
  6. Appl. Phys. Lett. v.48 H. Amano;N. Sawaki;I. Akasaki;Y. Toyoda
  7. Spectrochim. Acta v.40A no.10 S. Kvisle;E. Rytter
  8. Spectrochim. Acta v.47A no.3-4 G. A. Atiya;A. S. Grady;D. K. Russell;T. A. Claxton
  9. Matrix Isolation Spectroscopy A. J. Barnes(ed.);A. M. Uller(ed.);R. Gaufres(ed.)
  10. J. Chem. Phys. v.48 F. H. Frayer;G. E. Ewing
  11. Inorg. Chem. v.6 C. H. Henrickson;D. P. Eyman
  12. J. Raman Spectroscopy v.14 T. Tomita;C. E. Sjogren;P. Klaeboe;G. N. Papatheodorou;E. Rytter
  13. Acta Chem. Scand. v.25 A. Almenningen;S. Halvorsen;A. Haaland
  14. Inorg. Chem. v.8 J. Tanaka;S. R. Smith
  15. J. Chem. Soc. Faraday II v.72 M. F. Lappert;J. B. Pedley;G. J. Sharp;M. F. Guest
  16. J. Chem. Soc. v.A R. J. O'Brien;G. A. Ozin
  17. Can. J. Chem. v.41 A. P. Gray;A. B. Callear;F. H. C. Edgecombe
  18. Spectrochim. Acta v.20 T. Onishi;T. Shimanouchi
  19. Bull. Chem. Soc. Japan v.38 T. Ogawa;K. Hirota;T. Miyazawa
  20. J. Electron. Mater. v.18 A. Tripathi;D. Mazzarese;W. C. Conner
  21. Bull. Chem. Soc. Japan v.51 no.6 F. Watari;S. Shimizu;K. Aida;E. Takayama
  22. Chem. Mater. v.3 no.4 B. S. Sywe;J. R. Schlup;J. H. Edgar
  23. J. of Org. Chem. v.149 A. J. Conway;J. D. Smith