Separation and Elution Behavior of Some Iron(Ⅲ)porphyrin Complexes by Reversed-Phase Liquid Chromatography

역상 액체 크로마토그래피에 의한 Iron(Ⅲ)porphyrin 착화합물들의 분리 및 용리거동에 관한 연구

  • Chang Hee Kang (Department of Chemistry, Cheju National University) ;
  • In Whan Kim (Department of Chemistry Education, Taegu University) ;
  • Won Lee (Department of Chemistry, Kyung Hee University)
  • 강창희 (제주대학교 자연과학대학 화학과) ;
  • 김인환 (대구대학교 사범대학 화학교육과) ;
  • 이원 (경희대학교 문리과대학 화학과)
  • Published : 1993.12.20

Abstract

Some iron(III)porphyrin complexes were prepared, and identified by the spectroscopic methods. Elution behavior of iron(III)porphyrin complexes was investigated by reversed-phase HPLC. The optimum conditions for the separation of iron(III)porphyrin complexes were examined with respect to flow rate and mobile phase strength. These complexes were successfully separated on NOVA-PAK $C_{18}$ column using methanol / water(95/5) for $[T_pCF_3PP)Fe(R)]$ and methanol / water (98/2) for $[(P)Fe(C_6F_5)]$ as a mobile phase. It was found that these complexes were largely eluted in an acceptable range of capacity factor value ($0{\leq}logk'{\leq}1$). The dependence of the capacity factor (k') on the volume fraction of water in the binary mobile phase as well as the dependence of k' on the liquid-liquid extraction distribution ratio$(D_c)$ in methanol-water / n-pentadecane extraction system showed a good linearity. It means that the retention of iron(III)porphyrin complexes on NOVA-PAK $C_{18}$ column is largely due to the solvophobic effect. Also, there was a good linear dependence of the capacity factor(k') on the column temperature and enthalpy calculated by van't Hoff plot. From these results, it was confirmed that the retention mechanism of iron(III)porphyrin complexes in reversed-phase liquid chromatography was invariant under the condition of various temperature, and the solvophobic binding process exhibited isoequilibrium behavior.

몇 가지 iron(III)porphyrin 착화합물을 합성하고, 이들에 대하여 역상 액체 크로마토그래피에서의 최적 분리조건 및 용리거동을 조사하였다. 분리관, 흐름속도, 용리액의 조성 등을 변화시킨 실험에서 분리관은 NOVA-PAK $C_{18}$, 용리액은 methanol/water의 이성분 혼합용매를 적당히 조절하였을 때 용량인자가 최적 분리조건인 $0{\leq}logk'{\leq}1$ 범위를 만족시켰다. 용리거동에 관련된 인자들로는 용리액의 세기, 분포비$(D_c)$ 및 분리관의 온도변화에 따른 엔탈피(${\Delta}H^{\circ}$), 엔트로피(${\Delta}S^{\circ}$), 보정온도($\beta$)를 조사하여 분리 메카니즘을 규명하였다. 이성분 용매계에서 용리 세기 및 물의 부피분율과 용량인자(logk')와의 관계를 조사한 결과 이들간에는 직선성이 잘 성립되었으며, 부피비와 용량인자와의 관계에서도 비교적 직선성을 잘 나타내었다. 이러한 결과로부터 시료의 용리 메카니즘이 소용매성 효과에 기인하고 있음을 확인할 수 있었다. 또한 열역학적인 방법으로 용리거동을 조사하기 위하여, van't Hoff plot으로부터 엔탈피, 엔트로피를 구하였다. 엔탈피와 용량인자와의 상관관계를 조사한 결과 iron(III)porphyrin 착화합물과 정지상과의 상호작용은 온도변화에 과계없이 일정함을 알 수 있었고, 정지상과의 소용매성 결합 과정은 등평형 거동을 나타내었다.

Keywords

References

  1. Bio-inorganic Chemistry R. W. Hay
  2. Inorganic Chemistry J. E. Huheey
  3. The porphyrins v.I D. L. Drakin;J. B. Kim;J. B. Paine;A W. Johnson;P. S. Clezy;Dolphin(ed.)
  4. Bioinorganic Chem. v.7 K. M. Kadish;M. M. Morrison
  5. J. Am. Chem. Soc. v.106 D. Lancon;P. Cocolios;R. Guilard;K. M. Kadish
  6. J. Am. Chem. Soc. v.112 C. Gueutin;D. Lexa;M. Momenteau;Jean-Michel Saveant
  7. The porphyrins v.I W. I. White;R. C. Bachmann;B. F. Burnham;D. Dolphin(ed.)
  8. FEBS Lett. v.116 M. L. Richter;K. G. Rienits
  9. Sep. Sci. and Tech. v.17 W. A Spencer;J. F. Gaiobardes;M. A. Curtis;L. B. Bogers
  10. J. Chromatogr. v.422 M. Dellinger;D. Brault
  11. J. Chromatogr. v.126 C. Horvath;W. Melander;I. Molnar
  12. Col. Czecho. Chem. Commun. v.50 F. Vlacil;V. Hamplova
  13. J. Chromatogr. v.172 O. Liska;J. Lehotay;E. Brandsteterova;G. Guiochon;H. Colin
  14. Analyst. v.107 R. M. Smith;L. E. Yankey
  15. J. Liq. Chromatogr. v.6 no.10 A. M. Bond;G. G. Wallace
  16. Bunseki KagaKu v.31E S. Inchinoki;M. Yamazaik
  17. Reversed-Phase High Perfomance Liquid chromatography A. M. Krstulovic;P. R. Brown
  18. J. Korean Chem. Soc. v.32 W. Lee;D. W. Lee;Y. J. Kim;H. C. Kim
  19. J. Chromatoger. v.317 C. K. Lim;J. M. Rideout;T. J. Peters
  20. Anal. Biochem. v.157 S. W. Kennedy;D. C. Wigfield;G. A. Fox
  21. J. Chromatogr. v.423 M. Takayama
  22. J. Chromatogr. v.462 D. W. Dixon;L. Amis;M. S. Kim;J. Callahan
  23. The porphyrins v.I J. W. Buchler;D. Dolphin(ed.)
  24. J. Organomet, Chem. v.253 P. Cocolios;G. Lagrange;R. Guilard
  25. Inorg. Chem. v.27 K. M. Kadish;D. Sazou;Y. M. Liu;A. Saoiabi;M. Ferhat;R. Guilard
  26. Inorg. Chem. v.30 no.7 K. M. Kadish;A Tabard;W. Lee;Y. H. Liu;C. Ratti;R. Guilard
  27. Introduction to Modern Liquid Chromatography (2nd Ed.) L. R. Snyder;J. J. Kirkland
  28. J. Chromatogr. v.125 C. Horvath;W. R. Melander;I. Molnar
  29. J. Chromatogr. v.203 A Nahum;Horvath
  30. Chomatographia v.18 W. R. Melander;C. Horvath
  31. Anal. Chem. v.54 P. Jandera;H. Colin;G. Guiochon
  32. J. Chromatogr. v.185 W. R. Melander;B. K. Chen;C. Horvath
  33. J. Chromatogr. v.157 J. Narkievicz;M. Jaroniec;M. Borowko;A. Patrykiew
  34. J. Chromatogr. v.179 L. R. Snyder
  35. J. Korean Chem. Soc. v.36 I. W. Kim;G. Y. Choi;M. H. Lee;C. H. Kang;W. Lee
  36. J. Chromatogr. v.158 W. Melander;D. E. Campbell;C. Horvath
  37. Anal. Chem. v.52 L. C. Sander;L. R. Field
  38. J. Chromatogr. v.639 M. Diack;R. N. Compton;G. Guichon
  39. Physical Organic Chemistry J. Hine