1,2,3,4-테트라하이드로카바졸 및 그 유도체들과 클로라닐의 전하이동 착물에 관한 연구

A Study on Charge Transfer Complexes of 1,2,3,4-Tetrahydrocarbazole and Some Derivatives with Chloranil

  • 문성배 (釜山大學校 師範大學 化學校育科) ;
  • 문정대 (釜山大學校 師範大學 化學校育科)
  • Seong-Bae Moon (Department of Chemistry Education, Pusan national University) ;
  • Jung-Dae Moon (Department of Chemistry Education, Pusan national University)
  • 발행 : 1993.11.20

초록

몇 가지의 전자주개와 하나의 전자받개와의 전하이동 착물에 관한 연구는 세 종류의 용매 즉, 염화에틸렌, 염화메틸렌 그리고 클로로포름하에서 그리고 16, 19, 22, 25$^{\circ}$C의 온도범위에서 자외선 분광광도계로서 최대흡수파장 및 흡광도를 측정하였다. 그리고 이 연구는 전자주개로서는 1,2,3,4-테트라하이드로카바졸, 2-메틸, 3-메틸 그리고 3-에킬사수소카바졸을 선택하였으며 전자받개로는 클로라닐을 이용하였다. 이 전하이동 착물은 1:1 몰비로 형성되었으며, 최대흡광도 및 형성상수는 용매의 극성과 온도에 따라 감소하였다. 열역학적 양으로서 용매의 극성과 온도가 형성상수에 미치는 영향을 논하였으며, 또한 몇 가지의 전자주개들의 전자 및 입체효과가 형성상수에 미치는 효과를 고찰하였다.

Charge transfer complexes of some electron donors with one electron acceptor have been studied to investigate the maximum absorption wavelength and absorbance by UV-Vis spectrometer in three kinds of solvents, such as ethylene chloride, methylene chloride, and chloroform, at the temperature ranges of 16∼25$^{\circ}$C. 1,2,3,4-Tetrahydrocarbazole (THC), 2-methyl, 3-methyl, and 3-ethyl THC were selected as electron donors while chloranil was used as an electron acceptor in this study. It is found that these complexes forms 1 : 1 complexes, and their maximum absorbance and formation constants decreases with respect to the function of the polarity of solvent and temperature. The polarity of solvents and the temperature have been influenced on the formation constants, which were described using the thermodynamic properties. Moreover, the electronic and steric effects of electron donors have also been effects.

키워드

참고문헌

  1. Electronen-Donator-Acceptor Komplexes G. Briegleb
  2. Molecular Complex in Organic Chemistry L. J. Andrew;R. H. Keefer
  3. Molecular Complexes J. Rose
  4. Organic Change-Transfer Complexes R. Foster
  5. A Lecture and Reprint Vol. Molecular Complexes R. S. Mulliken;W. B. Person
  6. Bull. Soc. Chim. Fr. M. M. Shoukry;R. Koussini
  7. J. Am. Chem. Soc. v.72 R. S. Mulliken
  8. J. Am. Chem. Soc. v.74 R. S. Mulliken
  9. J. Phys. Chem. v.56 R. S. Mulliken
  10. J. Am. Chem. Soc. v.78 E. M. Kosower
  11. J. Am. Chem. Soc. v.80 E. M. Kosower
  12. J. Am. Chem. Soc. v.78 E. M. Kosower;J. C. Burback
  13. J. Am. Chem. Soc. v.82 E. M. Kosower;J. A. Skorcz;W. M. Schwartz, Jr.;J. M. Palton
  14. J. Phys. Chem. v.70 A. Ray;P. Mukerjee
  15. J. Phys. Chem. v.70 A. Ray;P. Mukerjee
  16. J. Phys. Chem. v.67 A. Ray;P. Mukerjee
  17. Trans. Faraday Soc. v.60 R. Foster;P. Hanson
  18. J. Med. Chem. v.11 P. Millie;J. P. Malrein;J. Benaim;J. Y. Lallemard;N. Julia
  19. J. Heterocyclic Chem. v.13 B. Sabourault;D. Abenhaim;J. Bourdais
  20. Master Thesis, Seoul National University H. S. Oh
  21. Master Thesis, Seoul National University J. C. Chang
  22. Master Thesis, Seoul National University I. K. Lee
  23. J. Am. Chem. Soc. v.70 H. A. Benesi;J. H. Hildebrand
  24. J. Am. Chem. Soc. v.69 C. U. Rogers;B. B. Corson
  25. J. Chem. Soc. Plant;Roser
  26. Bull. Chem. Soc. Japan v.45 T. Nogami;K. Yoshihara;S. Nagakura
  27. 大韓化學會 v.37 文正大;張春鶴
  28. 電荷利動錯體(上) 久保山昭
  29. J. Chem. Phys. v.61 R. S. Mulliken
  30. J. Am. Chem. Soc. v.81 J. N. Murell
  31. Bull. Chem. Soc. Japan v.39 H. Kuroda;T. Amano
  32. J. Am. Chem. Soc. v.88 S. Iwata;J. Tanaka;S. Nagakura
  33. J. Am. Chem. Soc. v.81 N. J. Rose;R. S. Drago
  34. Proc. SPIE-Int. Soc. Opt. Eng. P. Bruni;E. Giorgini;G. Tosi;A. Zampini
  35. J. Am. Chem. Soc. v.113 E. K. Kim;J. K. Kochi
  36. J. Org. Chem. v.54 E. K. Kim;J. K. Kochi
  37. 有機化學反應における 溶媒效果 淺原照三(외 共著)