DOI QR코드

DOI QR Code

Selective Reduction by Lithium Bis- or Tris(dialkylamino)aluminum Hydrides. Ⅶ. Reaction of Lithium Tris(dihexylamino)aluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups$^1$

  • Published : 1993.12.20

Abstract

The approximate rates and stoichiometry of the reaction of excess lithium tris(dihexylamino)aluminum hydride(LTDHA) with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, 0$^{\circ}$C) were studied in order to define the reducing characteristics of the reagent for selective reductions. The reducing ability of LTDHA was also compared with those of the parent lithium aluminum hydride(LAH), lithium tris(diethylamino)aluminum hydride(LTDEA), and lithium tris(dibutylamino)aluminum hydride(LTDBA). In general, the reactivity toward organic functionalities is in order of $LAH{\gg}LTDEA{\geq}LTDBA>LTDHA$. LTDHA shows a unique reducing characteristics. Thus, the reagent reduces aldehydes, ketones, esters, epoxides, and tertiary amides readily. Anthraquinone is cleanly reduced to 9,10-dihydro-9,10-anthracenediol without hydrogen evolution, whereas p-benzoquinone in inert to LTDHA. In addition to that, disulfides are also readily reduced to thiols without hydrogen evolution. However, carboxylic acids, anhydrides, nitriles, and primary amides are reduced slowly. Especially, this reagent reduces aromatic nitriles to the corresponding aldehydes in good yields.

Keywords

References

  1. Bull. Korean Chem. Soc. v.13 J. S. Cha;S. E. Lee;H. S. Lee;J. C. Lee;J. M. Kim;O. O. Kwon;S. J. Min
  2. Reduction with Complex Metal Hydrides N. G. Gaylord
  3. Org. Reactions v.6 W. G. Brown
  4. Lithium Aluminum Hydride in Organic Chemistry V. M. Micovic;M. L. Mihailovic
  5. J. Am. Chem. Soc. v.78 H. C. Brown;R. F. McFarlin
  6. J. Am. Chem. Soc. v.80 H. C. Brown;R. F. McFarlin
  7. J. Am. Chem. Soc. v.86 H. C. Brown;C. J. Shoaf
  8. J. Am. Chem. Soc. v.88 H. C. Brown;P. M. Weissman;N. M. Yoon
  9. J. Am. Chem. Soc. v.87 H. C. Brown;P. M. Weissman
  10. Israel J. Chem. v.1 H. C. Brown;P. M. Weissman
  11. Ann. v.607 G. Hesse;R. Schrodel
  12. J. Am. Chem. Soc. v.80 H. C. Brown;B. C. Subba Rao
  13. J. Am. Chem. Soc. v.86 H. C. Brown;C. P. Garg
  14. J. Am. Chem. Soc. v.86 H. C. Brown;A. Tsukamoto
  15. J. Org. Chem. v.31 P. M. Weissman;H. C. Brown
  16. J. Am. Chem. Soc. v.87 H. C. Brown;H. M. Deck
  17. Bull. Korean Chem. Soc. v.13 J. S. Cha;J. C. Lee;J. M. Kim;S. W. Jeong;K. S. Park;S. E. Lee;H. S. Lee
  18. Bull. Korean Chem. Soc. v.12 J. S. Cha;S. E. Lee;H. S. Lee
  19. Bull. Korean Chem. Soc. v.14 J. S. Cha;J. C. Lee
  20. Org. Prep. Proced. Int. v.24 J. S. Cha;S. E. Lee;H. S. Lee
  21. Gazz. Chim. Ital. v.90 P. Longi;G. Mazzanti;F. Bernardini
  22. Inorg. Chem. v.10 R. G. Beach;E. C. Ashby
  23. Izv. Akad. Nauk SSSR, Ser. Kim. V. V. Gavrilenko;M. I. Vinnikova;V. A. Antonovich;L. I. Zakharkin
  24. Organic Synthesis via Boranes H. C. Brown;G. W. Kramer;M. M. Midland

Cited by

  1. Reaction of Sodium Cyanoaluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups vol.29, pp.12, 1993, https://doi.org/10.5012/bkcs.2008.29.12.2379
  2. Reaction of lithium tris(tert-butylthiolato)hydridoaluminate with selected organic compounds containing representative functional groups vol.65, pp.1, 2009, https://doi.org/10.1007/s10847-009-9628-4
  3. Thirty Six Years of Research on the Selective Reduction and Hydroboration vol.32, pp.6, 1993, https://doi.org/10.5012/bkcs.2011.32.6.1808