Abstract
The interaction of vanadium(V) with various a-hydroxycarboxylate ligands in aqueous solution at pH 3.2 have been studied by $^{51}V$ and $^{13}C$ NMR spectroscopies. From the results it is supposed that vanadates mainly form the octahedral complexes with lactate, 2-hydroxybutyrate, glycerate, and malate. While, vanadates form the trigonal-bipyramidal complexes with glycolate, tartarate, and 2-hydroxy-3-methylbutyrate, and tetrahedral complexes with pyruvate(diol), 2-hydroxyisobutyrate, and 2-hydroxy-3-methylbutyrate. The bipyramidal products are formed as monomeric compounds. The octahedral products are formed as dimeric compounds with no evidence for a significant proportion of the monomeric derivatives. The complexes are mainly formed through the coordination at the carboxylate and the 2-hydroxyl groups of the ligands.