DOI QR코드

DOI QR Code

Kinetics and Stereochemistry of CO Substitution Reactions of Half-Open Chromocene Carbonyls(Ⅲ): Reactions of $Cp^{*}(\eta^{5}-C_{5}H_{7})$CrCO and Phosphines

  • Jong-Jae Chung (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Byung-Gill Roh (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Yu-Chul Park (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
  • Published : 1993.10.20

Abstract

The CO substitution reactions in the complex, $Cp^*(C_5H_7)$CrCO with $PR_3(PR_3=PMePh_2,\;P(OCH_3)_3,\;PMe_2Ph)$ were investigated spectrophotometrically at various temperatures. For the reaction rates, it was suggested that the CO substitution reaction took place by first-order (dissociative) pathway. Activation parameters in decaline are ${\Delta}H^{\neq}= 21.99{\pm}2.4$ kcal/mol, ${\Delta}S^{\neq}= 8.9{\pm}7.1$ cal/mol·k. Unusually low value of ${\Delta}S^{\neq}$, suggested an ${\eta}^5-S{\to}\;{\eta}^5$-U conversion of the pentadienyl ligand. At various temperature, the rates of reaction for the Cp(pdl)CrCO complexes increase in the order $Cp^*(C_5H_7)$-CrCO < Cp$(C_5H_7)$CrCO < Cp(2,4-$C_5H_{11}$)CrCO, which can be attributed to the usual steric acceration or electronic influence for the ligand substitution of metal complexes. This suggestion was confirmed by the extended-Huckel molecular orbital (EHMO) calculations, which revealed that the energy of $[Cp^*(U-C_5H_7)Cr]^{\neq}$ transition state is about 4.93 kcal/mol lower than that of [Cp(S-$C_5H_7)Cr]^{\neq}$ transition state, and the arrangement of the overlap populations between Cr and the carbon of CO is $Cp^*(C_5H_7)$CrCO > Cp($C_5H_7$)CrCO > Cp(2,4-$C_7H_{11}$)CrCO.

Keywords

References

  1. Chem. Rev. v.88 R. D. Ernst
  2. Advances in Organometallic Chemistry v.26 P. Powell;West, R.(ed.);Stone, F. G. A.(ed.)
  3. J. Organomet. Chem. v.285 H. Yasuda;A. Nakamura
  4. J. Am. Chem. Soc. v.112 J. R. Bleeke;R. J. Wittenbrink;T. W. Clayton;M. Y. Chiang
  5. J. Am. Chem. Soc. v.104 M. C. Bohm;M. Eckert-Maksic;R. D. Ernst;D. R. Wilson;R. Gleiter
  6. J. Am. Chem. Soc. v.107 M. S. Kralik;J. P. Hutchinson;R. D. Ernst
  7. Organometallics v.6 M. S. Kralik;A. L. Rheingold;R. D. Ernst
  8. Inorg. Chem. v.22 S. J. Severson;J. H. Cymbaluk;R. D. Ernst;J. M. Higashi;R. W. Parry
  9. Organometallics v.6 J. R. Bleeke;W. J. Peng
  10. J. Am. Chem. Soc. v.108 G. T. Palmer;F. Basolo;L. B. Kool;M. D. Rausch
  11. J. Am. Chem. Soc. v.113 Jeffrey W. Freeman;Noelc. Mallinan;Atta M. Arif;Robert W. Gedridge;Richard D. Ernst;Fred Basolo
  12. J. Chem. Phys. v.39 R. Hoffmann
  13. J. Am. Chem. Soc. v.100 J. H. Ammeter;H. B. Burg;J. C. Thibeault;R. Hoffmann
  14. J. Am. Chem. Soc. v.98 R. H. Summerville;R. Hoffmann
  15. J. Am. Chem. Soc. v.107 L. Stahl;J. P. Hutchinson;D. R. Wilson
  16. J. Am. Chem. Soc. v.109 R. M. Kowaleski;F. Basolo;R. W. Gedridge;W. C. Trogler;T. D. Newbound;R. D. Ernst
  17. Bull. Kor. Chem. Soc. v.14 J. J. Chung;B. G. Roh
  18. Bull. Kor. Chem. Soc. J. J. Chung;B. G. Roh
  19. J. Am. Chem. Soc. v.96 R. D. Adam;D. E. Collins;F. A. Cotton