DOI QR코드

DOI QR Code

Electron Redistribution of Clavalanate on Binding to a $\beta$-Lactamase

  • Sang-Hyun Park (Department of Chemistry, Seoul National University) ;
  • Hojing Kim (Department of Chemistry, Seoul National University)
  • Published : 1993.08.20

Abstract

A class A ${\beta}$-lactamase from Staphylococcus aureus PC1 complexed with 3R,5R-clavulanate is studied. The starting geometry for the computation is the crystal structure of the ${\beta}$-lactamase. Docking of the clavulanate to the enzyme is done exploiting the requirements of electrostatic and shape complementarity between the enzyme and clavulanate. This structure is then hydrated by water molecules and refined by energy minimization and short molecular dynamics simulation. In the energy refined structure of this complex, the carboxyl group of the clavulanate is hydrogen bonded to Lys-234, and the the carbonyl carbon atom of the clavulanate is adjacent to the $O_{\gamma}$ of Ser-70. It is found that a crystallographic water molecule initially located at the oxyanion hole, which is formed by the two -NH group of Ser-70 and Gln-237, is replaced by the carbonyl oxygen atom of the 3R,5R-clavulanate after docking and energy reginement. The crystallographic water molecules are proved to be important in ligand binding. Glu-166 residue is found to be repulsive to the binding of clavulanate, which is in agreement with experimental observation. Arg-244 residue is found to be important to the binding of clavulanate as well as to interaction with C2 side chain of the clavulanate. The electron density redistribution of the clavulanate on binding to the ${\beta}$-lactamase in studied by an ab initio quantum-mechanical calculation. A significant redistribution of electron density of the clavulanate is induced by the enzyme, toward the enzyme, toward the transition state of the enzymatic reaction.

Keywords

References

  1. CRC Crit. Rev. Microbiol. v.11 J.-M. Frere;B. Joris
  2. Philos. Trans. R. Soc. London Ser. B v.289 R. P. Ambler
  3. Science v.236 O. Hertzberg;J. Moult
  4. J. Mol. Biol. v.217 O. Hertzberg
  5. PROTEINS v.7 P. C. Mowes;J. R. Knox;O. Dideberg;P. Charlier;J.-M. Frere
  6. J. Mol. Biol. v.220 J. R. Knox;P. C. Mowes
  7. FEBS Lett. v.299 C. Jelsch;F. Lenfant;J. M. Masson;J. P. Samama
  8. Acc. Chem. Res. v.18 J. R. Knowles
  9. Biochem. J. v.266 H. Christensen;M. T. Martin;S. G. Waley
  10. Biochem. J. v.272 R. M. Gibson;H. Christensen;S. G. Waley
  11. J. Biol. Chem. v.266 H. Adachi;T. Ohta;H. Matsuzawa
  12. Biochemistry v.30 W. A. Escobar;A. K. Tan;A. L. Fink
  13. Biochemistry v.29 L. M. Ellerby;W. A. Escobar;A. L. Fink;C. Mitchinson;J. A. Wells
  14. Biochemistry v.25 G, Dalbadie-McFarland;J. J. Neitzel;J. H. Richards
  15. Biochem. J. v.254 M. T. Martin;S. G. Waley
  16. Biochemistry v.29 R. Virden;A. K. Tan;A. L. Fink
  17. PROTEINS v.6 W. J. Healey;M. R. Labgold;J. H. Richards
  18. Protein Enginereering v.4 F. Jacob;B. Joris;O. Dideberg;J. Dusart;J.-M. Ghuysen;J.-M. Frere
  19. Biochem. J. v.271 F. Jacob;B. Joris;S. Lepage;J. Dusart;J.-M. Frere
  20. Biochem. J. v.263 S. J. Cartwright;A. K. Tan;A. L. Fink
  21. Ann. Rev. Microbiol. v.45 J.-M. Ghuysen
  22. Antimicrob. Agents Chemother. v.11 C. Reading;M. Cole
  23. Drug Des. Deliv. v.1 A. G. Brown
  24. Biochem. J. v.179 C. Reading;P. Hepburn
  25. J. Mol. Biol. v.112 F. C. Bernstein;T. F. Koetzle;G. J. B. Williams;E. F. Meyer, Jr.;M. D. Brice;J. R. Rodgers;O. Kennard;T. Shimanouchi;M. Tasumi
  26. Biochem. J. v.276 R. P. Ambler;A. F. W. Coulson;J.-M. Frere;J. M. Ghuysen;B. Joris;M. Forsman;R. C. Levesque;G. Tiraby;S. G. Walley
  27. Phys. Rev. B v.136 P. Hohenberg;W. Kohn
  28. Phys. Rev. A v.140 W. Kohn;L. J. Sham
  29. J. Chem. Phys. v.76 B. Delley;D. E. Ellis
  30. J. Chem. Phys. v.88 L. Versluis;T. Ziegler
  31. Hyperfine Interact. v.33 A. J. Freeman;C. L. Fu;M. Weinert;S. Ohnishi
  32. Chem. Phys. v.110 B. Delley
  33. J. Am. Chem. Soc. v.105 F. W. Kutzler;P. N. Swepston;Z. Berkovitch-Yellin;D. E. Ellis;J. A. Ibers
  34. J. Chem. Phys. v.89 M. P. C. M. Krijn;D. Feil
  35. Acta Crystallogr. B v.44 M. P. C. M. Krijn;H. Graafsma;D. Feil
  36. Phys. Rev. B v.35 H. J. F. Jansen;A. J. Freeman
  37. DMOL
  38. INSIGHT-II
  39. J. Chem. Phys. v.23 R. S. Mulliken
  40. J. Mol. Biol. v.224 C. C. H. Chen;O. Herzberg
  41. Biochem. J. v.258 I. Rizwi;A. K. Tan;A. L. Fink;R. Virden
  42. FFBS Lett. v.99 V. Knott-Hunziker;S. G. Waley;B. S. Orlek;P. G. Sammes
  43. Philos. Trans. R. Soc. London Ser. B v.289 S. J. Cartwright;A. F. W. Coulson
  44. Biochemistry v.20 C. Kemal;J. R. Knowles
  45. Prog. Biophys. Mol. Biol. v.45 W. G. J. Hol
  46. Biochem. J. v.279 J. Lamotte-Brasseur;G. Dive;O. Dideberg;P. Charlier;J.-M. Frere;J. M. Ghuysen
  47. Protein Engineering v.7 M. Delaire;F. Lenfant;R. Labia;J.-M. Masson
  48. Biochem. J. v.248 P. J. Madgwick;S. G. Waley
  49. Biochem. J. v.207 J.-M. Frere;C. Dormans;V. M. Lenzini;C. Duyckaerts
  50. J. Chem. Soc., Perkin Trans. 1 A. G. Brown;D. F. Corbett;J. Goodacre;J. B. Harbridge;T. T. Howarth;R. J. Ponsford;I. Stirling;T. J. King
  51. Frontier Orbitals and Organic Chemical Reactions I. Fleming