Abstract
The neutral, reduced, and oxidized 2,2-trans isomers of $Rh_2(ap)_4$ (ap=2-anilinopyridinate) were investigated with respect to dioxygen binding in $CH_2Cl_2$ containing 0.1 M tetrabutyl-ammonium perchlorate. $Rh_2(ap)_4$ binds dioxygen in nonaqueous media and forms a $Rh^{II}Rh^{III}$ superoxide complex, $Rh_2(ap)_4(O_2)$. This neutral species was isolated and is characterized by UV-visible and IR spectroscopy, mass spectrometry and cyclic voltammetry. It can be reduced by one electron at $E_{1/2}$ = -0.45 V vs. SCE in $CH_2Cl_2$ and gives ${[Rh_2(ap)_4(O_2)]}^-$ as demonstrated by the ESR spectrum of a frozen solution taken after controlled potential reduction. The superoxide ion in ${[Rh_2(ap)_4(O_2)]}^-$ is axially bound to one of the two rhodium ions, both of which are in a +2 oxidation state. $Rh_2(ap)_4(O_2)$ can also be stepwise oxidized in two one-electron transfer steps at $E_{1/2}$ = 0.21 V and 0.85 V vs. SCE in $CH_2Cl_2$ and gives ${[Rh_2(ap)_4(O_2)]}^+$ followed by ${[Rh_2(ap)_4(O_2)]}^{2+}$. ESR spectra demonstrate that the singly oxidized complex is best described as ${[Rh^{II}Rh^{III}(ap)_4(O_2)]}^+$ where the odd electron is delocalized on both of the two rhodium ions and the axial ligand is molecular oxygen.