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narrowing condition can be satisfied. For a rodlike chain 

molecule like amino acids in a viscous medium such as 

aqueous solution this condition will not in general be satis­

fied very well, and then all three modes vb v2, and v3 may 

remain coupled to one another. This in turn will give the 

solution R(t) as a combination of three exponential terms, 

which explains why the combination of only two exponential 

terms failed to explain the relaxation of methyl protons in 

this case. Only way to get out of trouble in this situation 

is to treat the methyl group as an A3X system, including 

13C besides three protons, and obtain the data for as many 

observable modes as possible. Application of this technique 

to a few examples is under investigation in our laboratory.

Concluding Remarks

It was found that at room temperature or below the spin­

lattice relaxation of 19F in benzotrifluoride could be well de­

scribed by a two-parameter equation given explicitly in Eq. 

(16) which was derived under the assumption that modula­

tion of interactions in the spin system, both dipole-dipole 

and spin-rotation, is caused predominantly by internal rota­

tional motions in the molecule, and the separation of contri­

bution due to dipolar interactions from that due to spin-rota­

tion interaction was successfully achieved by least-square 

fitting of observed data to this equation. As expected, the 

spin-rotational contribution was found to overwhelm that of 

dipolar origin over the temperature range of 248-268 K and 

becomes more dominating at higher temperature.
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A noise-induced transition is presented for a bistable system subjected to a multiplicative random force, which is 

singular at the unstable state. The stationary probability distribution is obtained from the Fokker-Planck equation 

and the effects of the singularity is analyzed. On the basis of noise-induced phase transition with Gaussian white 

noise, the relaxation time and the transition rate of the system are evaluated up to the first order correction of 

D. In the parameter region v<l, the transition rates decrease as the exponent v goes to 1 and as the coefficient 

of the linear term of the kinetic equation increases.

Introduction

In recent years there have been increasing interests in

•To whom correspondence should be addressed. 

the investigation of the dynamic properties in the fluctuating 

nonlinear system. In particular, a number of papers have 

been devoted to the study of relaxation times (or mean first- 

passage times) and transition rates in bistable systems driven 

by random forces1-3. Depending on the properties of the
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random force, various methods have been applied to this 

problem. In the case of Gaussian random force with white 

noise (short correlation time) the properties of the system 

are inve옹tigated from the Fokker-Planck equation (FPE) 

which describes a fluctuating nonlinear system4,5. On the 

other hand, the systems with colored noise are studied by 

using the stochastic trajectory analysis3. However, the inves­

tigation of the dynamic properties in the bistable system 

driven by multiplicative random forces is far more compli­

cated. We are going to evaluate the relaxation times and 

transition rates in m니tiplicative fluctuating bistable systems 

described by the following Langevin equation4,6.

兰产+龙 B) +g(r)「(£) (1)

where A(r) is the deterministic term of a kinetic equation 

and a cubic polynomial and F(t) is a random force. The func­

tion g«) describes the coupling between the deterministic 

term and the random force and reflects the fact that this 

coupling may depend on the concentr가i이! of the system.

In the bistable system there are three steady states. The 

one of the stationary states is unstable and the rests are 

stable. In the absence of the noise, transitions between two 

stable steady states cannot occur since the system evolves 

according to the deterministic equation. If external force is 

applied to such a bistable system, the dynamical system may 

evolve to either of two asymptotic stable states and cause 

transition between the coexisting steady states. If the system 

stays mainly near the deterministic steady states, a transition 

rate between th海 steady states can be evaluated by apply­

ing a noise induced rate process. This dynamic behavior is 

shown in many systems, physical5, chemical1,7, and biochemi­

cal system8-10.

Let us consider the following mechanism of chemical reac­

tion8

k2
(2)

d+x-We
with the reactants and products A, B, C, D, and E assumed 

to have constant concentration and 总's being rate constants 

of elementary reactions. Then, the kinetic equation is written 

a 옹

으X= - Ck-必3+㈣厂 gx+(3)

If the system is completely homogeneous, after a suitable 

scaling we can rewrite a kinetic equation as

刍―或+成顷 (4)
at

where the scaling constants are

t—HCk-2, p = (5^2—Dk^)/Ck-2, and

According to the stability analysis there are three steady 

states13 under the following conditions p>0 and 0<r)<2(p/3)3/2. 

Near the steady state far from equilibrium the concentration 

X(f) may be written in terms of Xi(t)=X°'VXitt). By using

Cheolju Kim and Dong Jae Lee 

the deviation from the steady state the kinetic equation be­

comes

~x-hW)=px-xit (5)

where p is assumed to be positive and d은fined as |i=p—3X°2 

>0.

If the nonlinear homogeneous system is subjected to exte­

rnal multiplicative noise, the Langevin equation is expressed 

as

茶LgrT+l시v r(0 (6)

where v need not to be restricted to an integer. Although 

the multiplicative fluctuating nonlinear system is dealt with 

in numerous papers, the FPE derived from the above Lange­

vin equation has not been sufficiently investigated. In parti­

cular, only the equation with v=l and v=0 has been mainly 

investigated. Recently, G, Hu and K. He4 have investigated 

the dynamic properties by using the FPE for the system 

with |i-l. A noise-induced phase transition is mainly due 

to the multiplicative noise lx|v which determines the prop­

erty of the system. However, it is much more complicated 

to investigate the dynamic properties for the chemical system 

with singularity. The chacteristics of the system are such 

that the unstable singular point of the deterministic is lo­

cated identically to the point of the noise-induced system. 

The characteristics of the system are such that at an unsta­

ble state the behavior of the system is dramatically changed.

In this paper the dynamic behaviors of the system is in­

vestigated in all possible v values. In Sec. IL, the stability 

of the system will be analyzed and the stationary distribution 

will be calculated from the FPE. In Sec. III., using a suitable 

transformation of the variable x, the Langevin equation with 

multiplicative random force will be transformed into the 

equation with additive random forces In the parameter region 

v<l we obtain up to the first order of diffusion coefficient 

the result for the relaxation time and the transition rate 

between both stable states. The results and discussion are 

given in Sec. IV.

II. Stationary Probability 머stributions

The deterministic system has one unstable point x—0 and 

two stable points x=± g1/2. Then, the system has the instrin- 

sic feature that the unstable point of the deterministic sys­

tem is located identically to the singular point of the random 

force. The random force is assumed to satisfy the Gaussian 

condition for the correlation time t(=Z—

<r(0>=0, (河)> =2班d), (7)

where D is the diffusion coefficient and 8(/—f) is the Dirac 

delta function. The FPE corresponding to Eq. (6) is derived 

as

£)= 一 亲{丄皿一必一D 备T시'}Rx，0. ⑻

The stationary solution of the FPE gives the stationary pro- 

baility distribution as
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Figure 1. The phase diagram in v-Z> plane. The curves are 

shown the critical values of D versus v. The porfiles 1, 2, and 

3 correspond to 卩=0.5,卩=1, and 卩=2, respectively.

P成 0)=，4此'‘ exp버壺&*7늤 I쇠f］｝. (9)

The maxima of the probability (corresponding to potential 

well) appear at the solution of the equation

x4-2v-px2-2v+vD=0 (10)

Using the Newton's method of successive approximation13 

we obtained the two stable points

小三却舛쁘 K*， (11)

In the case for which v>l, and v<0, the probability at the 

unstable point x=0 approaches to zero. On the other hand, 

in the region for which 0<v<l when L0, the probability 

distribution is divergent to positive infinite and near the 

unstable point there are different two minima of the probabi­

lity distribution besides two maxima.

This minima disappear at the critical condition1415. Increasing 

D, the minimum and maximum get closer to the critical va­

lue xc

牛勺［齢］j号n ㈣

The critical value Dc depends not only on the parameter 

v but also on 卩 in potential. The phase diagram is shown 

in Figure 1 and we take 卩=0.5,卩=L and g=2, respectively. 

With increasing value, Dc decreases. The critical Dc decrea­

ses as v approaches to 1. If D is larger than DCr the maximi- 

mum and the minimum point of the probability distribution 

disappear and the maximum peak appear at the origin which 

is an unstable point of the deterministic term.

The probability distribution given in Eq. (9) have the sym­

metry property with respect to x and the behavior of the 

probability display very interesting characteristics near the 

deterministic unstable point. With respect to the parameter 

v region, the singular Langevin force |x|v「(t) plays an im-

Figure 2. When £)=0.2 the stationary probability distributions 

in the three regions. The profiles 1, 2, and 3 correspond to 卩=0. 

5,卩=L and 卩=2, respectively, (a) In the region v+ 0, the distri­

butions were taken at v= —0.2. (b) In the region 0<v<l, the 

distributions were taken at v=0.5. (c) In the region v>l, the 

distributions were taken at v=1.2.

portant role in noise induced phase transition. As x approa­

ches the unstable point (tt。)，|x|-v term due to the random 

force goes to positive infinity when v>0 and it goes to zero 
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when v<0, while the exponential function due to drift term 

approaches zero in the regoin v>l. and in the case v<l 

it has a finite value. Thus, we can consider that the parame­

ter region divided into three part as shown in Figure 2. 

(i) In the case v<0, the probability at the origin disappears 

because the random force is infinitely strong near the unsta­

ble point (r->0). As shown in Figure 2(a), the distribution 

has a narrow hole at the unstable point and the hole beco­

mes narrower as v increases and 卩 decreases, (ii) In the 

region 0<v<l, since as j—O the random force decreases 

slowly, the system is controlled by the random force and 

as lO the probability diverges. In Figure 2(b) when v = 0.2, 

we take 卩=0.5 (curve 1),卩=1 (curve 2), and 卩=2 (curve 

3). The minimal distribution goes to zero as v increases and 

卩 increases, (iii) In the region v>l, since the random force 

decreases fast, the probability is governed by the drift force 

and approaches 0 as x->0. In Figure 2(c), as v=1.2, we fix 

卩=0.5,卩=1, and p=2. As v increases the central hole is 

enlarged and two peaks become closer and closer. Increasing 

卩 the two peaks become further apart. Thus, the noise-indu­

cing phase transition phenomena may be observed only in 

the case for which v<l. In the following section, we will 

transform the FPE with multiplicative random noise to the 

FPE with additive noise and then the relaxation time and 

transition rate is evaluated.

III. Relaxation Time and Transition Rate

Let us consider the system for which the kinetic equation 

is described as the multiplicative Langevin Eq. (6). It is cer­

tain that in the white noise limit (0—0) the dynamic be­

haviors of the system are closely related to the stationary 

용。lution. The time-dependent solution may have essentially 

different characters because of the singularity of multiplica­

tive random force. To facilitate the treatment of the singula­

rity we will introduce a new variable y defined by4

=(|x|E, for x>0.

' —〔一 |써 % for x<0. (14)

where £—1 —v. In the case that 기>1, the reduced variable 

>->oo as the concentration x goes to zero. In the parameter 

region v<l, the reduced variable >-*0 as the concentration 

x goes to zero. The Langevin Eq. (6) is reduced to

%卩=仰E r(o, (15)

where for >>0

Ay)=e{y-j(2+e)/£} (16)

and the function is symmetric against origin. It is obvious 

that the function 处)is smooth and the concentration y(t) 

never diverges to infinite in a finite time. The Fokker-Planck 

equation for the probability distribution P(yt £) corresponding 

to the Langevin Eq. (16) has the following form:

亲P3 t) =L(y)P(y, t)=_*S(y, 0; (17)

where the probability current S(y, t) is given as

S(y, 言}P(y, t), (18) 

and L(y) is the Fokker-Planck operator which is described 

as

斜 (19)

and the reduced diffusion coefficient d is

d- D (20)

In the stationary state the probability current in the FPE 

must be constant and then the stationary probability distri­

bution is described as

R(y)=C exp{-知)/d}, (21)

where C is normalization constant and the potential function 

is introduced as follows

伽 d乂 (22)

In the bistable system, the deterministic Eq. has three real 

roots. Two of these, y\ and 处，are stable and correspond 

to minima of the potenial. The third root, yu, is unstable 

and therefore corresponds to a maximum of the potential. 

It is assumed that the system initially lies in the vicinity 

of one of the minima of the potential 饥 or j2). In gereral, 

the final state is either the maximum of the potential or 

the other minimum. In latter case the MFPT is twice the 

former ca옹e. Introducing the potential of the system the Fok­

ker-Planck operator may be written as

E(y)= 斜d exp{-卩(y)/싸 哉exp{U(y)씨} (23)

If the stochastic variable cannot reach values smaller than 

為血 the current must be zero at the stationary state.

In order to obtain the nonstationary solution of the FPE 

we separate the probability distribution as follows

P(y t)=q)(y) exp(—M), (24)

where(p(y) and X are the eigenfunctions and eigenvalues 

of the Fokker-Planck operator with appropriate boundary 

conditions. The operator is not Hermitian, but can be trans­

formed into Hermitian form5 with the aid of the potential 

function exp{V(y)/2j}. If q©) are the eigenfunctions of the 

Fokker-Planck operator with the eigenvalues N the eigenfun­

ctions of the transformed operator with the same eigenvalues 

\ are expressed as

V«(y)= exp{V(y)/2d} q而) (25)

In order to calculate the transition rate we have to deter­

mine the lowest eigenvalue for a bistable potential and a 

metastable potential. The lowest nonvanishing eigenvalue is 

related to the transition rate form one well to another well 

of potential. It is assumed that at > = ± B the potential has 

absorbing wall (small potential barrier). This assumption is 

fairly reasonable because the potential function diverges as 

y goes to infinite. Because the probability current must be 

zero (reflecting wall) at y=B, we can obtain the eigenfunc­

tion of the Fokker-Planck operator by integrating the follow­

ing differential equation

d 旨 {exp{ 一 V(y)/아 島 [exp{V(y)/씨}q仞 = - 入戒0. (26)
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By integrating the above equation from x to B, the eigenfun­

ction is given as

{1- 쏭exp{—dy exp{【/(y)/d} j： 柞) 싸, (27) 

with the boundary condition

(po(B)=0, (28)

where the potential barrier AV is written as

△IS, %)二卩(y】)T©2)・ (29)

For large potential barrer height5 since the eigenvalue Md 

will be very small, the lowest eigenfunction is

血)= exp{M"B, y)/d\(po(O) (30)

By inserting Eq. (30) into the integral of Eq (27) we obtain 

the first order approximation for the eigenfunction

(po(y)=exp{AV(0, y)/싸(po(O)

{1一 -쓰-J： dy exp{V(y)/4 j： exp{-dz}, (31)

According to the boundary condition the eigenvalue up to 

the first order approximation is given by

入dy exp{f(y)/d} J： exp{-卩(z)/d} 씌 (32)

For small diffusion limit the double integral can be evaluated 

analytically. Because the integral has a very sharp maximum 

at y—y\ and z=yu we expand the potential function around 

the maximum point up to the fourth order. This eigenvalue 

X is regarded as the relaxation time from one stable state 

to an unstable state.

The relationship between relaxation time and the transi­

tion rate from one well to the other of the bistable potential 

is3,5

T= 1/2 人 (33)

In order to obtain the eigenvalue we must calculate the inte­

grals in Eq. (32). By using an expansion in the potential 

up to fourth order term3,5 and then evaluating the integrals 

in Eq, (32) we obtain the relaxation time as hallows

T-Toll+AD+OO)2)}, (34)

where

A= 我乌一乌}+쁘{尹有+-略},
4 L y ai ) 16( I시J a? J

and

伉尸也꽁오 and 뿅庭 (35)

The relaxation time To is the well-known Kramers' relaxation 

time given by

T°= 2国|：面i衍exp{z\V(%, ji)/d} (36)

where

D

Hgure 3. The ratio of R/Ra for the bistable system with 1. 

The curves 1, 2, 3, and 4 correspond to v= —0.2, v=0.2, v = 0.5, 

and v = 0.9, respectively.

丸）
(37)

2

For a symmetric potential 伉=0 and —0. The transition 

rate R from one w이 1 to the other of the bistable potential 

is equal to the inverse of the relaxation time

R 으 니 T (38)

Using the results given in Eqs. (34) and (38), the relaxation 

times and the transition rates are evaluated in the following 

section.

Results and Discussion

We have obtained the transition rate in the bistable chem­

ical system with the multiplicative random force, gW) = lxlv. 

The result of this paper is embodied in Eqs. (34) and (38). 

These are expressions for the transition rate when the cor­

relation time of the random force is short. The multiplicative 

noise-induced transition from one well to the other is applied 

to chemical reaction with nonlinearity. The result recovers 

the correct white-noise limiting behavior, which is identical 

to that of a bistable system driven by Gaussian white noise. 

The correction up to first order 0(D) need derivatives of 

the potential functionto fourth order. The transition rate 

from one minimum potental to another minimum potental 

can be evaluated on the basis of the Fokker-Planck equation 

with Gaussian additive noise. The transition rate is easily 

calculated by the relaxation givn in Eq. (37).

R=Ro[l+D((3—v)]笋2v) )峪_顽끼t (39)

where R° is the transition rate evaluated by G. Hu and K. 

He4.

学 2" v)} exp{ (4—2v)(l—v)Z) } 0。)

The results for the ratio R to Rq are shown in Figure 

3 and Figure 4. In Figure 3 we have taken the coefficient 

卩 in the potential to be unity and v= —0.2, v=0.2, v=0.5,
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Figure 4. The ratio of R/R^ for the bistable system with、，그 02 

The curves 1, 2, and 3 correspond to(1=0.5, p=l, and p=2, 

respectively.

and v=0.9, respectively. In Figure 4 we have taken 卩 to 

be 0.5, 1, and 2, respectively, when v=0.2. As D increases 

the ratio in large 卩 value decreases faster than the ratio 

in small 卩 does. As shown in Figure 3, it is obvious that 

in the region v<l the transition rates decrease with increas­

ing D. As the exponent v increases, the transition rates dec­

rease and relaxation times increase. In the limit v->l, the 

transition rate approaches zero.

In the result, in the region for which v<l the transition 

rates decrease as v increases and v decreases shown in Fig­

ure 3 and 4. However, in the case that v>l, it is obvious 

that in Eq. (17) never probability can be reach >-~>oo in any 

finite time. It means that the system cannot be reach the 

unstable state since the concentration x~^0 (unstable point) 

corresponds toy-^oo. When v>l the random force is so weak 

that the system is entirely controlled by the deterministic 

term in the vicinity of the unstable state. The transition be­

tween the two deterministic stable states cannot occur and 

the initial distribution is continuously retained.
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Orbital Interactions in BeCzH2 and 너C2H2 Complexes
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Ab initio calculations are carried out at the 6-311G** level for the C& interactions of Be and Li atoms with acetylene 

m이ecul巳 The main contribution to the deep minima on the 3B2 BeC2H2 and 2B2 LiC2H2 potenti가 energy curves 

is the b2 (2P(3力2)一 k"*(4力2)) interaction, the ai (2s(&z。一园(5s)) interaction playing a relatively minor role. The exo 

deflection of the C-H bonds is basically favored, as in the b2 interaction, due to steric crowding between the met서 
and H atoms, but the strong in-phase orbital interaction, or mixing, of the ax symmetry hydrogen orbital with the 

6a\ and 7a\ orbitals can cause a small endo deflection in the repulsive complexes. The Be complex is more 

stable than the Li complex due to the double occupancy of the 2s orbital in Be. The stability and structure of the 

MC2H2 complexes are in general determined by the occupancy of the singly occupied frontier orbitals.

Introduction

The interactions of metal atoms with molecules have been 

the subject. of many experimental and theoretical studies.1 

The main purpose of the research in this field is a funda­

mental understanding of catalysis. It has been suggested that


