DOI QR코드

DOI QR Code

Crystal Structures of Dehydrated $Ag^{+}\;and\;Ca^{2+}$ Exchanged Zeolite A, $Ag_{3.3}Ca_{4.35}$-A and of Its Ethylene Sorption Complex

  • Se Bok Jang (Department of Chemistry, Pusan National University) ;
  • Jong Yul Park (Department of Chemistry, Pusan National University) ;
  • Yunghee Oh Kim (Department of Chemistry, Pusan National University) ;
  • Yang Kim (Department of Chemistry, Pusan National University)
  • Published : 1993.02.20

Abstract

Two crystal structures of dehydrated $Ag_{3.3}Ca_{4.35}-A ({\alpha} = 12.256(2){\AA})$ and of its ethylene sorption complex (${\alpha} = 12.259(2){\AA}$) have been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at 21(l)$^{\circ}$C. Both crystals were dehydrated at 360$^{\circ}$C and $2{\times}10^{-6}$ Torr for 2 days and one crystal was treated with 200 Torr of ethylene at 24(2)$^{\circ}$C. The structures were refined to final error indices, $R_1$=O.065 and $R_2$ = 0.088 with 202 reflections and $R_1$=0.049 and $R_2$ = 0.044 with 259 reflections, respectively, for which I>3${\sigma}$(I). In these structures, all Ag$^+$ and Ca$^{2+}$ ions are located on two and three different threefold axes associated with 6-ring oxygens, respectively. In $Ag_{3.3}Ca_{4.35}-A{\cdot}6.65\;C_2H_4,\;3.3\;Ag^+\;and\;3.35\;Ca^{2+}$ ions are recessed 1.09 ${\AA}$ and 0.21 ${\AA}$, respectively, into the large cavity from the (111) plane at O(3). Each Ag$^+$ and Ca$^{2+}$ ion in the large cavity forms a complex with one $C_2H_4$$^{2+}$ ions and ethylene molecules are longer than those between Ag$^+$ ions and ethylene molecules.

Keywords

References

  1. Inorg. Chem. v.13 R. E. Riley;Seff
  2. Inorg. Chem. v.13 R. Y. Yanagida;T. B. Vance;K. Seff
  3. J. Am. Chem. Soc. v.97 P. E. Riley;K.B. Kunz;K. Seff
  4. J. Am. Chem. Soc. v.95 P. E. Riley;K. Seff
  5. Inorg. Chem. v.14 P. E. Riley;K. Seff
  6. J. Am. Chem. Soc. v.100 Y. Kim;K. Seff
  7. J. Korean Chem. Soc. v.34 M. S. Jeong;J. Y. Park;U. S. Kim;Y. Kim
  8. Bull. Korean Chem. Soc. v.13 S. B. Jang;S. D. Moon;J. Y. Park;U. S. Kim;Y. Kim
  9. J. Cryst. Growth v.8 J. F. Charnell
  10. J. Phys. Chem. v.88 K. Seff;M. D. Mellum
  11. Acc. Chem. Res. v.9 K. Seff
  12. Structure Determination Package Program B. A. Frentz;Y. Enraf-Nonius
  13. International Tables for X-ray Crystallography v.II
  14. J. Phys. Chem. v.95 Y. Kim;S. H. Song;K.Seff
  15. Handbook of Chemistry and Physics
  16. Acta Crystallgr. Sect A v.24 P. A. Doyle;P. S. Turner
  17. International Tables for X-ray Crystallography v.IV
  18. International Tables for X-ray Crystallography v.IV
  19. J. Chem. Soc. J. Chatt
  20. J. Chem. Soc. J. Chatt;R. G. Wilkins
  21. J. Chem. Soc. J. Chatt;L. A. Duncanson
  22. Bull. Soc. Chem. Fr. v.18 M. J. S. Dewar
  23. J. Phys. Chem. v.70 J. L. Carter;J. C. Yates;P. J. Lucchesi;J. J. Elliott;V. Kevorkian
  24. Interatomic Distance and Configuration in Molecules and Ions L. E. Sutton

Cited by

  1. Framework-Type Determination for Zeolite Structures in the Inorganic Crystal Structure Database vol.39, pp.3, 1993, https://doi.org/10.1063/1.3432459