Abstract
Two crystal structures of dehydrated $Ag_{3.3}Ca_{4.35}-A ({\alpha} = 12.256(2){\AA})$ and of its ethylene sorption complex (${\alpha} = 12.259(2){\AA}$) have been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at 21(l)$^{\circ}$C. Both crystals were dehydrated at 360$^{\circ}$C and $2{\times}10^{-6}$ Torr for 2 days and one crystal was treated with 200 Torr of ethylene at 24(2)$^{\circ}$C. The structures were refined to final error indices, $R_1$=O.065 and $R_2$ = 0.088 with 202 reflections and $R_1$=0.049 and $R_2$ = 0.044 with 259 reflections, respectively, for which I>3${\sigma}$(I). In these structures, all Ag$^+$ and Ca$^{2+}$ ions are located on two and three different threefold axes associated with 6-ring oxygens, respectively. In $Ag_{3.3}Ca_{4.35}-A{\cdot}6.65\;C_2H_4,\;3.3\;Ag^+\;and\;3.35\;Ca^{2+}$ ions are recessed 1.09 ${\AA}$ and 0.21 ${\AA}$, respectively, into the large cavity from the (111) plane at O(3). Each Ag$^+$ and Ca$^{2+}$ ion in the large cavity forms a complex with one $C_2H_4$$^{2+}$ ions and ethylene molecules are longer than those between Ag$^+$ ions and ethylene molecules.