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By use of cluster orbitals, analytic solutions of finite face-centered cubic clusters are obtained. Taking interactions 
between up to the second nearest neighbors into account, the forms of all the elements of the Hamiltonian matrix 
are found explicitly within Hiickel approximation. By adopting %, point group to the cluster, the matrix is simplified. 
We assume that the cluster orbitals can mix together only when their state indices are indentical. It is then possible 
to calculate various physical properties of face-centered cubic metal clusters and example are shown for palladium 
clusters. The results show that density of states and projected density of states are similar, qualitatively, with those 
obtained by extended Hiickel calculation.

Introduction

There have been some efforts to find analytic solutions 
(energies and wave functions) of finite metal clusters.1-6 
These analytic methods have an advantage that the limitation 
on the size of a cluster is eliminated, so they are very useful 
for treating large clusters whose solutions cannot be obtained 
by other methods. Messmer1 obtained analytic solutions of 
simple cubic (s.c.) metal clusters, taking interactions between 
only the nearest neighbors into account, within Hiickel 
scheme. He allowed only atomic s orbital on each atom. Bilek 
and Kadura2 obtained expressions for energies and wave 
functions of face-centered cubic (f.c.c.) clusters. They recog­
nized an s.c. cluster as two interpenetrated f.c.c. clusters 
and treated interactions between only the nearest neighbors 
allowing only s orbital per site.

Even if atomic orbitals other than s are allowed per site, 
analytic solutions can be obtained as long as one type of 
orbitals are allowed. We solved this problem for s.c., f.c.c., 
and b.c.c. (body-centered cubic) clusters.3 We obtained solu­
tions by considering interactions between up to the fourth 
nearest neighbors for s.c. (these correspond to the second 
nearest neighbors for f.c.c. and b.c.c.). Another approach is 
that of Salem4*6, who discussed the mixing of cluster orbitals 
of one s-type and of five d-types by taking interactions be­
tween only the nearest neighbors into account.

In the present work, we treat f.c.c. metal clusters and ex­
amine mixing of nine types of cluster orbitals 一 one s-type, 
three 力-types, and five rf-types — within Hiick이 scheme in­
cluding interactions between up to the second nearest (the 
fourth in case of s.c.) neighbors. First of all, the Hamiltonian 
matrix is simplified by adopting point group to the clus­
ter. With Hiickel approximation we can find all the elements 
of the Hamiltonian matrix explicitly. This means that it is 
possible to know how the interactions between any pairs 
of cluster orbitals are expressed. By diagonalizing this Hami­
ltonian matrix numerically, energies and wave functions of 
the cluster can be obtained. However, our goal is not to 
perform this calculation, but to obtain analytic solutions of 
the cluster. For this purpose, we assume that cluster orbitals 
can mix together only if the state indices of them are identi­

cal. This assumption is based on the forms of the analytic 
solutions for infinite crystals obtained by Slater and Koster7. 
From this assumption, we can make much simplification and 
final (numerical) calculation is made easy. We obtain density 
of states (DOS) and projected density of states (PDOS) of 
d orbitals (DOS projected on J-types of cluster orbitals; it 
is equivalent to DOS projected on atomic d orbitals, if atomic 
orbitals are used as a basis) of f.c.c. palladium (Pd) clusters 
using our scheme. The results are compared with those ob­
tained by extended Hiickel (EH) calculation, which show 
qualitative similarities. However, a flaw is that the mixings 
of cluster orbitals are not included fully, that is, off-diagonal 
submatrices are neglected in calculation.

D2h Cluster

We define a cluster orbital of 0-type 0)is one of the nine 
atomic orbitals — s, x, y, z, x2 —y2, z2, xy, xz, and yz; note, 
for instance, that x denotes atomic px orbital) of a finite f.c.c. 
metal cluster with rectangular parallelepiped shape, whose 
master (simple) cubic cluster has Na, 시& and Nc atoms along 
X-, y~, and z-axes, as f에ows『

W* =M 2(筋(sin i £ sin; x\ sin k Q, (1) 
i.J.k

where No is the normalization constant

0 L(M + D(M+D(Nc+l)」- '이

g T), and < are defined by

t Zn wn 尸 mh s、
"na+v n-瓦市-' Nc+i • (3)

I, m, and n are integers between 1 and NAf M, and Nc, 
respectively, and they must satisfy the condition3 E+n + C 
<3tt/2. This means that the number of cluster orbitals of 
0-type equals to the number of atoms of the f.c.c. cluster. 
We call (A mt n} a state index. The indices i, j, and k of 
the summation run from 1 to M, M, and Nc, respectively, 
and they lable the atom. The asterisk(*) on the summation 
denotes the restriction of i+j+k=odd, for atoms lie only
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(a)

Figure 1. (a) The form of Hamiltonian matrix composed of 이e- 
ments denoting interactions between chister orbitals. Blocks 
marked with "D” are diagonal submatrices and the others off- 
diagonal submatrices. Each block is made up of 81(9X9) eleme­
nts. (b) The form of one of the blocks of (a) representing interac­
tions between nine cluster orbitals with a state index (/, m, n) 
and those with (/： m', «'). Each square corresponds to an 이e- 
ment of this submatrix. For example, the element marled with

is 허” I H谢 I

on these sites in case of an f.c.c. cluster (With the same 
reason, there is no loss of generality if we assume that i 
■¥j+k=even).

Now from these cluster orbitals we can set up Hamiltonian 
matrix (Figure 1) compo옹ed of subm가ries which denote inte­
ractions between nine cluster orbitals with a state index (L 
m, n) and those with (「, m", nf). So, our task is to diagon­
alize this Hamiltonian matrix and to obtain the eigenvalues 
(energies) and eigenvectors (wave functions) of the cluster. 
Of course, the elements of the matrix should be known first. 
Before doing this, however, we allow the cluster to belong 
to a point group and from the symmetry conditions we will 
simplify the elements of the matrix, i.e.t make many elements 
vanish.

We assume that Na, Nb, and Nc are all odd integers, and 
that they are distinct. Then we can assign the point group 
D找 to this f.c.c. cluster. (If Na, Nb, and Nc are all odd, each 
axis 一 X-, y-f and z-axes — is C2-axis and much simplification 
can be made from the symmetry conditions of each cluster

for finding the characters ofHgure 2. Schematic diagrams
呻 with (Na, Nb, M)=(7, 5, 3) under eight symmetry operat­

ions of point group (a) Fonn of this cluster orbital, No g 

px(it j, k) sin sinThe upper figure corresponds 

to the upper layer 仇=1) of the cluster, the middle figure the 
middle layer 伙=2), and the bottom figure the bottom layer (k = 
3). Since this cluster orbital is a linear combination of atomic 
orbitals, the coefficients of atomic orbitals may be zero, and these 
atoms are indicated by dots. By eight symmetry operations this 
orbital can be either unchanged (for E, C2U), a(xz). and a(yz)) 
or change all the signs of each lobe (for the others) as (b). The 
characters are 4-1 or -1 for (a) and (b), respectively.

orbital. Besides, if the point group is (Na=Nb구or
(MNa=Nb=NQ, many degeneracies which may blur the ge­
neral feature of the matrix can arise.)

Now, we can find the irreducible representation to which 
each cluster orbital belongs, from the characters of each clus­
ter orbital under eight symmetry operations of point group 
D2*. Figure 2, for example, shows schematic diagrams for 
how to obtain the characters of w严 with V M, M)=(7, 
5, 3) under eight symmetry operations of point group D^. 
This cluster orbital is a linear combination of atomic px orbi­
tals and the form is given in Figure 2(a). By four symmetry 
operations LC2(r), C2(y), i, and a(ry)], the cluster orbital is 
changed to the form shown in Figure 2(b), and it is un­
changed by the other four operations of the group. So the 
characters are +1 for E, C2(2), b(r2), and o(yz), and — 1 
for C2to, C2(y), i, and o(ry)- Generally, with some algebraic 
manipulations (for detailed derivations, see Appendices 1) 
one can find that, for a given state index Q, m, n), the chara­
cter of a cluster orbital under a certain symmetry operation 
can be expressed as a product of two factors, one of which 
results from the change of the signs of atomic orbitals com­
prising the cluster orbital, the other from the conditions of 
the parities of the state index. Table 1 shows these two 
factors of each type of cluster orbital under each symmetry
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Table 1. Two Factors Comprising the Characters of Each Type 
of Cluster Orbitals under Each Symmetry Operation

% E c2u) C2(y) i o(xy) 应） 。（臀）

s + + + + + + + +
+ — — 4- — + + —
+ — + — — + 一 +
+ + — — — — + +
+ + + + + + + +
+ + + + + + + +
+ + — — + + 一 —
+ — + — + — + —
+ — 一 + + — — +

Factors0 2 Z+w /4-m m+n
l+m w + 1 Z + 1

Factors are the exponents with the base —1, i.€.,if the factor
is l + m, 나len this means (-iy+w. Products of this factor and 
the sign of each row of the column to which factor belongs are 
the characters.

Table 2. The Irreducible Representations to Which Cluster Or­
bitals Belong According to Their Parities

D" eee ee(f eoe eoo oee oeo ooe 000

S V B华

B篆 B1H
B霍 am
B也 B：*

d? _ v2 ak B%
ak 如

Bi“
B阪 Ag
Baa Big

aeeo means that I is even, m is even, and n is odd. 'Note that 
Ws, and wn belong to the same irreducible representations 
if their parities are same, i.e„ if they lie in the same column.

operation. The characters of each cluster orbital depend on 
the conditions of the parities of the state index of them. 
The parity of a whole number is what makes us know whe­
ther the number is even or odd. Since each state index is 
composed of three whole numbers, there can be eight types 
of parities, say I—even, m=even, and n=odd. From this table, 
one finds that cluster orbitals with some parities belong to 
one of the eight irreducible representations of point group 
D^. These representations are given Table 2.

Diagonal Elements

From the facts that each cluster orbital belongs to one 
of the eight irreducible representations of point group D豹 

and that the cluster orbitals belonging to different irreducible 
representations do not mix together,8 Hamiltonian matrix can 
be simplified, i.e.t many terms vanish due to the symmetry 
conditions. We set up Hamiltonian matrix composed of 9X9 
submatrices which denote the mixings between nine cluster

(L«.n)

s x2-y2 z2 xy xz yz X y z

s

*
Z2 vanish
xy *

xz »
yz «
X

vanish
«

y «
z »

Figure 3. The form of diagonal submatrices marked with "D” 
in Figure 1(a). Only elements (and a block) marked with 
do not vanish by symmetry conditions of the cluster.

orbitals (say w：/『，皿2,…，etc.) with (I, m, n) and those 
with (/', n‘). The size of this Hamiltonian matrix is
9NX9N where N is the number of metal atoms in the 이 

ter. First, we will examine the mixing of cluster orbitals 
which have the same (Z, m,性)'s. We call those submatrices 
"diagonal submatrices” of the full matrix.

Diagonal submatrices are composed of elements represent­
ing interactions between cluster orbitals whose state indices 
are indentical, so their parities are necessarily identical. This 
means that they lie in the same column of Table 2. The 
table tells that only three cluster orbitals(w$, W J, and 
皿2)belong to the same irreducible representation and that 
the representations the others belong to are different from 
each other. Therefore, only these three cluster orbitals can 
mix together and other mixings do not occur. Figure 3 shows 
the form of this diagonal submatrix.

It is possible to calculate each element of the diagonal 
submatrices within Huckel approximation including interac­
tions between up to the second nearest neighbors. (///), 
for example, can be calculated as follows:

(z%2)三〈吧2 I Heff I wu >

=N(3 2 (sin2 i g sin2; T)sin2^ Q<z2(4 j,力)I H紡'丨 z2te j,为)〉 

i. ]. k
+NN+S.N,

=Ez"(000)+NN. +S.N, (4)

where ^(000) denotes the Coulomb integral of atomic d? 
orbital, i.e.,

&切2(0師)三었,2(£ jf k) I I dAi, j, 幻〉. (5)

In Eq. (4) and from now on, the terms representing inter­
actions between the nearest neighbors, and those represen­
ting interactions between the second nearest neighbors are 
shortended to N.N. and SN, respectively. N.N. and S.N. 
can be calculated with some algebra (see Appendices 2 and 
3) as follows:

N.N= 4E? XI10) cos^cosr] + 4E? z2(011) cost]cos?
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Table 3. Elements of Diagonal Submatrices for a Given State Index

【代丄sin2!]

七뽀의

(尤2二y%麥―寸)=■辱_时宀，2(00(» + 4・&2_/宀‘KUO) cos? 8爭1+4£言2_兒丄2(011) [cosg cos^+conq cos<]+2玲一員2一时(200) [cos2^

+ cos2i]] + 2-/x2-^2(002) 8$2<+4£/—,2*2_,2(200)[料+ 号?」]+4瓦2一/乂2_/(002) 一了” ‘
L 十 1 Nb +1」 Nc +1

(以2)=玲｛(a)。)+4瓦知gio) cos? cost)+4z2(011)[cos^ cosC+costi cosQ 4-2E^.^(200)[cos2^+cos2i]] + 2^(002) cos2?
昌燮(2(씨籌七쁞引+4"(002) 法* 

(•必y)=Es(000)+4&F(110) cos? cosh + 4&f(011)[cosScos<+costi coK】 + 2&g(200)[cos既+cos2n] + 2瓦以(002) cos2?
+ 4E““(200) [箫「+就삐+ 4Eb(002)

Nc+1

(辺彼)=瓦皿(000)+4・&3(110) cos?cos?+4£xy,xy(Oil)[cos^cost) + cost] cos<] + 2E财y(200)[cos2£+cos2C]+2E%(002) co物
+4瓦特200) 曜쁘-+ j쁞외+ g“(002) ~L

Na + 1

(必z)=&f(000)+4瓦心(110) cost) cosC+4Ew^(011)[cos?cost] + co야cosQ + 2Exy.(200)[cos2ii4-cos2C+2xy(002) co邳 

+ 4卜(200) 備普+ 碧외+4晶“(002) 으호
Na + 1

(x/x) =£xx(000) +4£xx(110) [cos^ cost] + cos^ cos<] + 4£xx(011) cost]瞄+2£丄(200) cos2^4-2x(002)Ecos2n + cos2Q
+ 4"力) 將-+ 4"2) [黑七쁘외 

(必)=Es(000)+4£，(U0) [a斌 cost] + cost] cosQ + 4£'xx(011) cos?cos?+2£XJ(200) cos2t)+ 2E,；x(002)[cos2^ + cos2<]
+ 4 験 2 叫쁞*+4財)2)[龄+ 法외

(^)=Exx(000)+4Exx(110) Ccos<cos?+cost) cosC + 4£'XI(011) cos?cosn + 2£x,X200) cos2<+2Ex,x(002)[cos2^+cos2n]
+ 4験200) 若+4"삐跆 +湖 

"-玲 = (¥—>%)=4£宀2(011)[一(灵 coM+cost) cos']+ 2瓦宀2(200) [cos2£_g2r)]+4氏宀2(200) 序쁘一話咼

(S々少二(泓)=4知2(110)M(斌 cosn + 4&z2(011)[coshos<+cosq cds<]+2瓦,/(200)[cos览+cos2t]] + 2&n(200) cos2C
+4"2°이器우湖+4"的2) 齡

(尤2 -j%2)=(泓分一丿2)= 4 辱,2项(0M) [ - cos? cos?+cost] cosQ+2 &字_/(200) "os災-cos2们 + 4 瓦淫_/(200)[宁告-茶

吒,n，and C are defined by 戶心丄i
M十丄 M十1

<s(i, j, k)\H^\d^i+l, j+1, k)>.

n=TrTi ■ and <三 See Eq. (3) of text. ”(s々)즈〈噂罗하〉. 17瓦/(110)三

and

+ 4&4 ?(101) co 苗 cos^ (6a) + 2E& 2(002) oos2C+4实 以飯)으①호,

ZVc 十 1 (6b)

S.N. = 2玲 /(200) cos 发 + 4&2 以200)李므호 

M +1

+2/ ?(020) cos2n + 4碇 ?(020)의므务 

M' 1

where

and

瓦切2(110) = 020，k)\H^\ 必0+1, j+1,訪〉 (7a)

瓦財(200)=얺刘; ;； 为) I 时 I d心2, j, 幻〉. (7b)
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Since 瓦2,事(011)=瓦涅(101) and ?(200)=E?, ?(020), (e2/?2) 

can be written in more compact form as

fe2/^) =E^, X000)+?(110) cos? COST)

+4£2,z2(011)[8sS cos^+cosi] cos?]

+ 2E?,X200)[cos2?+cos2t)] + 2E22,X002) cos2?

+ 依go)聽 嘴*] g(002膘호.
(8)

The other elements can be calculated similarly and they are 
shown in Table 3. The terms in이uding 饱 + 1) ', (M+Df 
and (Nc+1)t arise from the surface atoms and they vanish 
as Na, Nb, and Nc go to infinity, i.e., as the size of the clu옪ter 
increases infinitely.

The elements of the off-diagonal submatrices (interactions 
between cluster orbitals with different state indices) can be 
found with similar method. However, their forms are not 
so simple as the diagonal ones. We will discuss these in 
next section. We will see that they also contain energy para­
meters, say as the elements of the diagonal subma­
trices. These energy parameters may be obtained from the 
extended Huckel (EH) calculation. So, it is possible to obtain 
numerical values of all the elements of the Hamiltonian ma­
trix. By numerical diagonalization method, one can find en­
ergies and wave functions of the cluster. However, in prac­
tice, this numerical diagonalization is restricted by the size 
of the matrix.

Our goal is not to diagonalize this Hamiltonian matrix 
numerically, but to obtain analytic solutions of the cluster. 
Even if the values of all the elements are known analytically, 
it is very difficult — nearly impossible — to diagonalize this 
matrix analytically. So, one needs some approximations to 
find eigenvalues (and eigenvectors) of the cluster. In case 
of infinite crystals, a wave vector k is defined and this is 
a "good, quantum number, so Bloch sums with different 
wave vectors do not mix with each other. Bloch sums are 
the counterparts of the cluster orbitals. Similarly the wave 
vectors are the counterparts of the state indices. So we may 
reasonably expect that the terms representing the mixing 
between cluster orbitals with different state indices will va­
nish as the size of the cluster increases. Keeping thi돊 in 
mind, we assume that mixing between cluster orbitals with 
different state indices do not occur in all cases. This means 
that elements obtained in this section are only nonvanishing 
elements, that is, the Hamiltonian matrix is composed of 
only N diagonal 바ocks, whose size is 9X9. Now our task 
is to diagonalize these 9X9 submatrices for N times. These 
diagonalizations are performed numerically. In fact, each of 
these submatrices is also decomposed into a 3X3 block and 
6 diagonal elements. So only diagonalizations (N times) of 
these 3X3 blocks are needed (Figure 3). Even if the size 
of the cluster (the number of metal atoms in the cluster) 
increases, there is no problem, for only the number of calcu­
lations of these diagonalizations increases.

We carry out these calculations, on the assumption given 
above, for palladium clusters. The energy parameters are 
obtained from EH calculations done previously in our lab.9 
Figure 4 shows density of states (DOS) and projected DOS 
(PDOS) of d orbitals (shaded areas) of Pd clusters. The clus-

(b)

(
컨
)s

o
a

A

 
.

여
 s

o
a

(c)

뎌gure 4. Curves denoting DOS and PDOS of d orbitals (shaded 
areas) of Pds3 and PdW73 시usters. (a) DOS and PDOS of Pds3 
cluster by EH calculation, (b) by our method taking interactions 
between only the nearest neighbors into account, (c) up to the 
second nearest neighbors, and (d) for Pdi073 cluster with our 
method up to the second nearest neighbors. Note that the scale 
of ordinate is arbitrary. Calculated HOMO levels are (a) —8.84, 
(b) —8.53, (c) —8.50, and (d) ~8.34 eV.

ters used for calculations are P(，3 for (a)-(c), and Pdi073 for 
(d). In case of Pds3 cluster, two methods are used for calcula­
tions, one [Figure 4(a)] is EH and the other [Figure 4(b) 
and (c)] is our scheme. Curves shown in Figure 4(b) is those 
of DOS and PDOS of Pd# 시uster when interactions between 
only the nearest neighbors are considered and (c) those up 
to the second nearest neighbors. From these, we can see 



68 Bull. Korean Chem. Soc, VoL 14, No. 1, 1993 Juhyeok Lee et al.

that the forms of the curves of DOS and PDOS by our me­
thod are similar, qualitatively, with those obtained by EH 
calculation. A sharp falls above 0 eV for (b) and (c) are thou­
ght to originate from the fact that we took only diagonal 
submatrices into account. In a diagonal submatrix, terms de­
noting interactions between p orbitals appear only on diago­
nal positions. This means that the mixings of p orbitals are 
not included fully. However, since HOMO of the cluster lies 
about 一&—9 eV [HOMO levels are calculated as (a) 
— 8.84, (b) —8.53, (c) — 8；50, and (d) —8.34 eV], these or­
bitals are not significant. From (b) and (c), we know that 
there are few problems if interactions between the second 
nearest neighbor•몮 are neglected. The matter will be men­
tioned in next section. Since our approach is an기ytic, the 
limitation on the size of the cluster is eliminated. As an 
example we carry out calculations for Pdi073 cluster. For this 
cluster, the size of the Hamiltonian matrix is 9,657X9,657 
and direct numerical diagonalization of this matrix is second 
to impossible. However, we can do it, though approximately, 
and the results are shown in Figure 4(d).

In next section, the forms of the elements of off-diagonal 
submatrices excluded in this section will be discussed. We 
will see that the forms of any elements can be known expli­
citly. However, solving the full matrix analytically is impossi­
ble, so we will not include these off-diagonal elements in 
calc 마가 km.

Mixing of Cluster Orbitals with 
Different State Indices

We have shown that each cluster orbital with some parities 
belongs to one of the eight irreducible representations of 
point group D% (Table 2). By rearranging Table 2, cluster 
orbitals (with some parities) belonging to the same irreduci­
ble representations can be collected. These are given in Ta­
ble 4. From the symmetry conditions, it follows that the clus­
ter orbitals in the same row mix together and th간 those 
in different rows do not mix. A very careful examination 
of this table may lead to the fact that there are some rules 
on the parity conditions for cluster orbitals belonging to the 
same irreducible representation. Say, in all of the eight rows, 
only the parities of I are changed {even^odd, odd—^even) if 
we move from the first column to the second one. This 
means that the cluster orbitals of s-type and those of x-type 
mix together only if their parities of I are .different. Rules 
of this kind are seen in all pairs of columns. From these, 
one finds some rules on the parity conditions of the mixing 
of cluster orbitals. That is,

〈禱”旧明|祚顶'"'〉老0,

if the following parity conditions are satisfied: (i) the parities 
of I and r should be different if x*s appear odd times in 
both(D and(for instance, the number of Vs is three for 
(r2—j2/r), and two for (功:)，etc.); (ii) for .y and z, same condi­
tions hold on the parities of tn and and n and nr; and 
(iii) the corresponding parities should be same when the 
numbers of occurrence of x, y, or z are even. These rules 
hold for the above example — s and x.

How can we explain the above rules? For the simplicity 
of discussion, interactions between only the nearest neigh­
bors are treated. (We showed that, for palladium, there is

Table 4. Parity Conditions for Each Type of Cluster Orbitals 
to Belong to the Same Irreducible Representations

% s X y z x2-/ z2 xy xz yz

4 ooo eoo oeo ooe ooo ooo eeo eoe oee
B切 eeo oeo eoo eee eeo eeo ooo oee eoe

eoe ooe eee eoo eoe eoe oee ooo eeo
B% oee eee ooe oeo oee oee eoe eeo ooo
A“ eee oee eoe eeo eee eee ooe oeo eoo
Bn, ooe eoe oee ooo ooe ooe eee eoo oeo
B& oeo eeo ooo oee oeo oeo eoo eee ooe
B独 eoo ooo eeo eoe eoo eoo oeo ooe eee

（iTo） (110)

Figure 5. Four cases on
integrals between as s orbital and (a) s, (b) px, (c) 弗，(d) py 
orbitals, each pair being centered on the positions of the nearest 
neighbors. Note that the signs are not absolute ones, but relative 
ones by setting the sign of E^.^CllO) positive.

not much difference when we neglect interactions between 
he second nearest neighbors.) If 0 and(矿 are same, four 

resonance integrals on a plane, say E，(110), E“(liO), 
MJilO), and Ex,x(liO)( are identical. In general, however, 
this is not the case and four cases arise for resonance in­
tegrals, for example, on xy-plane (Figure 5). For these four 
cases, the terms denoting interactions between the nearest 
neighbors on ry-plane can be calculated. For (a),

〈噂” I 蹭 I #■'”'〉I "g
I the nearest neighbors

=凡陨$(110) g (sin次 sin/r] sin^0{ [sin0+ sin(/+ sin^r]
t.}.k

+ [sin(i+l)E sin(，一l)n'sii讷C'] + [sin0—1)孕 sin(，+l)n'

XsiiU?n + [sin(i — 1)W sin(，—l)n' sii讷＜]}

=7时艮 $(110) 2 (siiug sin/T] sin双)[sin(i+1)孕+ sin0—l)S']

X [sin(/4- l)n' + 血而一功门 sin为C'
=4N()2瓦mho) co몮§ cos*

*
X Z (sin/^ sinig')(sii折I siiVn'Xsii讷＜ sin妩'). (9)

i. j. k
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For (b),
&y-plane

I the nearest neighbors

=ME XllO) 2 (si砒 siiyr] sin^OLsin(i + l)g — sin(i — Dg ] 
商k

X [sin。+ l)T]f + sin(，一 l)n']si 야K'

= 4小/花卩(1기)) sing' cost]'

X £ (sin药 cosz'^)(sin/T]siryn^(sinA?^ sin双'). 

ij,k

For (c) and (d),
lane

nearest nei^ibors

= 4N〔紐wQlO) sing' simf

X £ (sim*^ cosj^Xsin/T) co驴Y)(siM< sin双') 

ij,k

and

(10)

(11)

lane

nearest neighbors

=4N『瓦,，(110) cos?' sinT]'

X £ (simg sinz^Xsiiyi] co罗iT)(siM< sii讷<'). (12)
i.j,k

By extending these results to others (yz and xz) planes, we 
can obtain the terms denoting interactions between the near­
est neighbors for the above four pairs of cluster orbitals

e nearest neighbors

=4ME s(110)cos^,cost], s(011)cost]'co或

+E$, s(10 l)cos^f cosg']

X 2 (siiug sin^r)(sin/T)si】mT)(sm風 siM，'), 
i.j,k

〈頌” I H唠 I 頌”자〉I
I the nearest neighbors

= 4/Vo2E£s,x(110)sin^cosT],4-ESfx(011)cosn,cos^

+Es,*(101)cos，c(戒']

X Z (sinzg 옹inif')(sm而 sin/i1r)(sinAr^ sii讷<'), 

i.j.k

〈頌"I护I《/"'〉
I the nearest neighbors

=4JVj[瓦 ^(110)sin^sinT]'+瓦邛(01 l)sini] 'cos，

+£^(101)cosC sing']

X 切(sin:? cos:^)(sin/T| c(而T]')(sin双 sin碗'), 

i.}. k

(13)

(14)

(15)

he nearest neighbors

=4M 气& ^(HO)cos^" sint]，+ ESi /01 l)sini)' cos， 

+E”(101)cosC'cosS']

X £ (sinzg sinz^)(siiyT] coMq')(sin風 sin/?^). 
i},k

Note that Es, 5( 110)=s(011)=ES, s(101), so Eq. (13) can be 
rewritten as

(16)

(18)

〈祯”” I敗I矿”"〉I
I the nearest neighbors

=4M)2瓦s(110)[cosW cost]' + cosn'eosf + cos。' cosg']

X f (sin:^ siru^Xsin/i] sin/il^Xsin^C sinZ&'). (17)
i. j, k

Besides, Es x(110)=Es^(101) and £“(011) equals zero, so Eq. 
(14) can also be rewritten as

〈頌” I捫I矿*”'〉I
I the nearest neighbors

= 4N『瓦‘(no) sin^ (cosn' + cos：)

X 2 (sinzg cos苗')(sin，i] siq而)(sin效 si가X'). 
L j. k

For final solutions, however, we must know the resonance 
integral values and they may be obtained from EH calcula­
tion. So, if we write Eqs. (17) and (18) as (13) and (14), 
there are no problems. And for systematic treatment, the 
forms of Eqs. (13)-(16) are preferred to those of Eqs. (17) 
and (18). From Eqs. (13)-(16)t we can see that they are com­
posed of two factors, one of which is a simple number and 
the other the value obtained by sum of some terms.

From Eqs. (13)-(16) and from the rules on the mixing of 
cluster orbitals (Table 4), one notices three facts, that is:
(i) if the parities of I and I’ (or those of m and mf, or n 
and nf) should be differe가 for mixing, a factor sinzg cosig' 
(or sin而 co琴if, or sin^C cosfe^) appears in the summations;
(ii) factors associated with same parities are products of two 
sine functions, i.e.t a factor simg sin比'appears in the sum­
mation if I and I' should have same parities for mixing; and
(iii) if sinig sini^ factor appears in the summation, the cons­
tant factor contains cos^\ if factor of sii戒 cosz'^ appears, 
it contains sing'. These results can be extended to any pairs 
of cluster orbitals. Therefore, it is possible to write down 
all of the off-diagonal elements of the Hamiltonian matrix 
explicitly, that is

(19)

〈w：" I 濟丨 wF”'〉=Eg(000)标

+ 皿也(110)(誰:)錦)+“011)(黑:)憲：

0皿)(腰'')(饕“(議')

5(쪄;:) 嶼械：)].

If the parities of I and V should be different for mixing of 
given two cluster orbitals, upper factors including W (and 
those in시uding x\r for m and m： and f for n and nr) are 
selected. Lower factors (§, n'，or，according to I, mf or 
m) are selected when the same parities are needed.

The problem is that the summation in Eq. (19) cannot 
be separated, for the restriction on the summation that i 
+j+R=odd. So, if we are to separate this summation, it 
must be decomposed into four summations as
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盂=冬,冬爲+,%爲爲
i+j + k = odd

+总冬Z+馬爲爲• ㈣
Each of the summation in the right-hand side of Eq. (20) 
can be calculated as

2 2 g (sinig cos£W) (sin/i] sin/T]') (sin骯 sii比，')

1, even j； even kodd

=Z (sin/^ cosi'^) 2 (sin/T] sin/T),) V (sin/sii讷＜').

i. even j, even kToad

(21)

To calculate the summation in Eq. (19) (and to know the 
forms of all the elements of the Hamiltonian matrix), follow­
ing four summations must be calculated as

Z simg cosig =' 
i,odd

—2成玻 cosf' 
cos2g—cos%' if (l±l')=odd

(22)
0 if (J±r)~even

旗sin苗cos活'='

一 2sing cqs£ 
cos2^—cos2^ if(i±r)=odd

(23)
i. even 0 迁(/± lr)=even

2 化=(8队，+ 85一4)―z------

i.odd 、 / 4
(24)

X sm代 sm代‘ =(8賦一85—j -----
i,even 、 / 4

(25)

With Eqs. (19) and (22)-(25), any elements of the Hamiltonian 
matrix can be calculated.

From Eqs. (22)-(25), the rules on mixing of cluster orbitals 
can be proved. In Eq. (14), for example, the summation can 
be separated as follows:

y (sinzg cosz'^Xsin/'T] siryii'XsinA^ sin杉，')

i. J. k

= Z (sin代 cos/W) Z (siq/q siq/i]')(옹iiUKsii讷＜)

/, even j.k
j + k = odd

+ Z (sin苗 coszg') X (sin/n sin/q'Xsin/fC sin/'). (26)
i, odd ).k

j + k- even

From Eqs. (22) and (23), we can see that Eq. (26) is zero 
if (Z± r)—even, i.e.f the parities of I and of s-type cluster 
orbital and x-type one are same. So these two cluster orbitals 
can mix if their parities of I and V are different from each 
other.

Concluding Remarks

As concluding remarks we like to discuss the merits and 
defects of our method. The major merit is that the limitation 
on the 옪ize of the cluster has been eliminated, for the me­
thod is analytic. If the cluster is infinite crystal, we can use 
the band theory of s아id state physics. In this case, however, 
we cannot discuss surface phenomena, for the crystal has 
no surface. But cluster orbitals enable us to treat surface 
properties as well as bulk properties of solids. So, one can 
use this method, for instance, to study the adsorption pheno­
mena on metal surfaces. However, our method has some 

defects as: (1) the shape of cluster is limited, so the surface 
is also limited to (100) plane, and cluster must be of f.c.c. 
structure; (2) since only diagonal 옹ubmatrices are diagona­
lized, i.e.r since off-diagonal submatrices (interactions bet­
ween cluster orbitals whose state indices differ from each 
other) are neglected, enough mixings are not included, esp. 
in case of p orbitals. The second defect arises from the fact 
that the stae indices (I, m,龙)'s are not "good” quantum nu­
mbers.

The present work will be extended to two directions. One 
is to obtain, practically, several physical properties of metal 
clusters of varying sizes. As an example, our previous work9 
on the hydrogen atoms in interstices of Pd, Ni, and Pt (all 
are of f.c.c. structure) clusters can be extended to large clus­
ters. These results will be reported on forthcoming paper.10 
The other is to modify our scheme to include more interac­
tions and to obtain better solutions.
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Appendices

1. Finding the character of \欧” under symmetry opera­
tion C2⑵
如)wW

= ©20)M 2 力x(£ j, ^)Esin^ sin/n sin^C
i,}, *

=M y [c2(3)px(j, j,砂][si砒 si】e sin《|

i.}. k

=M ＞ [(-1)*px(NAA)]Esin^siiyn sinkG， 
i.j. k

(Al) 
If we replace M +1 — 2 and T&+1 一丿 by i and /, respectively, 
the above equation can be written, as 
软"

=Nq Z E(-l)-/(x(4 ;；幻][sin伽一代)sin(mn一力i)sii讷n
i.}. k

=M s [(-l)-A(i j,切[(一 yysi砒 si响 sinM] 
i.j,k

= (-l)-(-iy+mM 2 [力r(£Z 左)][sin哲siw’T] $i걔XI (A2)
I, y. k

二如)W”= [(- D・(T)申叮" (A3)

2. Deriving the terms representing interactions between 
the nearest neighbors

The number of the nearest neighbors of each atom corres­
ponding to each of three planes 一 that is, xy-, yz- and xz-

planes — is four. We can decompose the terms representing 
the interactions between the nearest neighbors to three te­
rms which results from three planes. We will consider only 
xy-plane. The formulae for other planes can be obtained simi­
larly.

I xy-piane

(g

I the nearest neighbors

=玲仃2(110収2 J sin^ sin/T1Csin(l + 1X+sin(i - IX]
i,j.k
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X [sin(/ + 1)t] + sin(;* — l)r]jsinA? sink^ (A4)

Additional terms arising from surface atoms, say sin(r —IX 
in case of i=lt appear in Eq. (A4). However, sin(i-l)S=0, 
so all of these terms are zero. Now, this equation can be 
simplified as

I ◎-미ane

I the nearest neighbors

=X110)M2 cos^ cost] y sin紀 si盼i sin*<

=4E?_ ?(110) cos^ con x\. (A5)

Similarly,
I 夕z-plane

0/z 이 =4虏知2(011) cosn cos<, (A6)
I the nearest neighbors

and
I xz-plane

(2%이 =4&源 (lOl)cogcosC. (A7)
I the nearest neighbors

...Wz 이 =4E?A110)cos^conTi
I the nearest neighbors

+ 4Ez. X011) cost] cosC+4E?产(101) cos^ cos?. (A8)

3. Derivation of terms representing interactions between 
the second nearest neighbors

The number of the second nearest neighbors of each atom 
corresponding to each of three axes 一 that is, x-, y- and z- 
axes — is two. We can decompose the terms representing 
the interactions between the second nearest neighbors to 
three terms which result from three axes. We will consider 
only x-axis. The formulae for other can be obtained similarly.

I x-axis

0/旳
I the second nearest nei効ibors

=玲,以200)・片{ £ sii诚[sin0+2)g+sin(i-2)曰 sin%<

~ % [気试 sin(—功 + sin伽一 S)sin0T+§]sii劳nsin勺#} 

j+k=even

(A9)

The form of Eq. (A9), dealing with interactions between the 
second nearest neighbors, is not so simple as Eq. (A4), dea­
ling with interactions between the nearest neighbors. For 
surface atoms, the first part of Eq. (A9) contains additional 
terms which are not zero. Say, if i=lf sin(z'—2)g=sin(一以 

and this is not zero. These terms origin가e from sites where 
no atom lies, say (—2, 1, 1). So they must be excluded from 
the summation for the equality to hold. These excluded te- 
nns comprise the second part of the equation. This equation 
can be simplified as

I x-axis
J")

I the second nearest neighbors

=E^t X200) Nq ^2 cos2^ Z sin紀血饥 sin%< 
i,J. *

+ 2 sin2? g sin2/!] sin2^}

j + k=even

=2泌?(200) cos2^+岭 /(200轉罢.

Similarly,
I >-axis

(2%2)
I the second nearest neighbors

♦ 2
= 2E?. ?(020) cos2t] + 4E% 2(020) 善므斗, 

M十1
and

I 2-axis

(Z%2)
I the second nearest nei^ibors

=g ?(002) cos2C+4E?. /(002)夺察T • 
十1

..•0/旳 I
I the second nearest neighbors

= 2摂 ?(200) cos 茂+4E? /(200) 으①호

+ 2E:2,2(020) cos2t] + 4E£ 師)20)翌꼬 

Nb+ 1

+ 2辱 邳)02) cos2<+4跆 師物은並호.

，&十1

(A10)

(All)

(A12)

(A13)
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