New Transition Metal Mediated Alkylation Reaction of arachno-$S_{2}B_{7}H_{8}$, Insertion Reaction of arachno-$S_{2}B_{7}H_{8}^{-}$ with $(CO)_{5}M$ {${C(R_{1})(R_{2})}$} $(M=Cr,\;W;\;R_{1}=CH_{3},\;C_{6}H_{5};\;R_{2}=OCH_{3},\;SC_{6}H{5})$: Synthesis and Characterization of arachno-$4-RCH_{2}-6,8-S_{2}B_{7}H_{8}\;(R=CH_{3},\;IIa;\;C_{6}H_{5},\;IIb)$

  • Hee-Joo Jeon (Department of Chemistry, College of Natural Sciences, Korea University) ;
  • Jae-Jung Ko (Department of Chemicla Education, Korea National University of Education) ;
  • Kang-bong Lee (Korea Institute of Science and Technollogy) ;
  • Sang Ook Kang (Department of Chemistry, College of Natural Sciences, Korea University)
  • Published : 1993.02.20

Abstract

Good yield synthetic routes for the production of new B-alkyl-dithiaborane clusters are reported. The syntheses of the B-alkyl-dithiaboranes are based on the use of Fischer-type carbene reagents to activate the B-H bonds of dithiaborane for alkyl-addition reactions and are the first examples of transition-mediated reactions of dithiaborane to be reported. Thus, reactions employing arachno-$S_2B_7H_8$- and $(CO)_5M{C(R_1)R_2}$ (M = Cr, W; $R_1 = CH_3,\;C_6H_5;\; R_2 = OCH_3,\;SC_6H_5)$ were found to yield the intermidiate anions I, $[(CO)_5M{C(R_1)R_2S_2B_7H_8}]^-$, which upon protonation gave the corresponding neutral, air-sensitive cluster arachno-4-$RCH_2-6,8-S_2B_7H_8(R=CH_3,\;IIa;\;C_6H_5,\;IIb)$ range from 30 to 35% yield. Complexes IIa and IIb are isoelectronic with arachno-6,8-$S_2B_7H_9$ and, on the basis of the spectroscopic data, are proposed to adopt a similar arachno cage geometry in which an $RCH_2$ units are substituted to 4 position boron atom of the arachno-6,8-$S_2B_7H_9$.

Keywords

References

  1. J. Am. Chem. Soc. v.111 A. T. Lynch;L. G. Sneddon
  2. J. Am. Chem. Soc. v.110 M. G. L. Mirabelli;L. G. Sneddon
  3. J. Am. Chem. Soc. v.109 A. T. Lynch;L. G. Sneddon
  4. Inorg. Chem. v.21 R. Wilczynski;L. G. Sneddon
  5. Inorg. Chem. v.20 R. Wilczynski;L. G. Sneddon
  6. J. Am. Chem. Soc. v.102 R. Wilczynski;L. G. Sneddon
  7. Organometallics v.2 T. Davan;E. W. Cororan Jr.;L. G. Sneddon
  8. Inorg. Chem. v.22 E. W. Corcoran Jr.;L. G. Sneddon
  9. J. Am. Chem. Soc. v.106 E. W. Corcoran Jr.;L. G. Sneddon
  10. J. Am. Chem. Soc. v.107 E. W. Corcoran Jr.;L. G. Sneddon
  11. Organometallics v.5 M. G. L. Mirabelli;L. G. Sneddon
  12. Bull. Korean. Chem. Soc. v.13 no.3 H. J. Jeon;J. J. Ko;S. J. Kim;D. S. Shin;S. O. Kang
  13. Manipulation of Air Sensitive Compounds D. F. Shriver;M. A. Drezdzon
  14. Z. Collect. Czech. Chem. Commun. v.42 J. Plesek;S. Hermanek;Z. Janousek
  15. Chem. Ber. v.100 E. O. Fischer;A. Maasbol
  16. J. Organomet. Chem. v.16 E. O. Fischer;B. Heckl;K. H. Dotz;J. Muller
  17. Chem. Ber. v.105 E. O. Fischer;M. Leupold;C. G. Kreiter;J. Muller
  18. J. Organomet. Chem. v.70 C. T. Lam;C. V. Senoff;J. E. H. Ward
  19. Two-Dimensional Nuclear Magnetic Resonance in Liquids A. Bax
  20. J. Am. Chem. Soc. v.102 D. C. Finster;W. C. Hutton;R. N. Grimes
  21. J. Am. Chem. Soc. v.106 T. L. Venable;W. C. Hutton;R. N. Grimes
  22. J. Am. Chem. Soc. v.107 C. P. Casey;W. H. Miles;H. Tukada
  23. J. Am. Chem. Soc. v.105 M. Brookhart;J. R. Tucker;G. R. Husk
  24. Organometallics v.7 S. O. Kang;L. G. Sneddon
  25. Inorg. Chem. v.27 S. O. Kang;L. G. Sneddon
  26. J. Organomet. Chem. v.24 J. A. Connor;P. D. Rose
  27. J. Organomet. Chem. v.36 E. O. Fischer;K. H. Dotz
  28. J. Organomet. Chem. v.55 J. A. Connor;P. D. Rose;R. M. Turner
  29. The Principle of Inorganic Chemistry W. L. Jolly
  30. Electron Deficient Boron and Carbon Clusters S. O. Kang;L. G. Sneddon;G. A. Olah(ed.);K. Wade(ed.);R. E. Williams(ed.)
  31. Inorg. Chem. v.28 S. O. Kang;G. T. Furst;L. G. Sneddon
  32. J. Am. Chem. Soc. v.111 S. O.Kang;L. G. Sneddon