HH mlojgoll ofst ElpiiQle] Xt=Sstof A8t o7
Automation of Tower Cranes based on Optimal Control Method
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Jin-Woo Lee + Sang-Bong Kim

ABSTRACT

This paper is concerned with automation of tower cranes in view of the robust control of tower crane
during take-off, load hoisting, load lowering and landing. The model equation of the tower crane is
induced by using Lagrange’s equation and it is linearized at equillibrium point. The control is realized
by adopting the optimal regulator method. The effectiveness is proved through the experimental results
for the oscillation control of cargo rope and the position controls of trolley and boom by the implementa-
tion of digital control using 16 bits microcomputer for the designed optimal control law.
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crane 1s successively increasing.

1. Introduction But because of inherence of the danger for
large accident due to itself unstability and primit-

In serveral industrial fields requiring load iveness in the side of production efficiency, it is
lowering and landing, the necessity of the tower successively increasing to demand about safety
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work, work efficiency and automation.

As the study to control crane, Maruko[1979]
showed a control method to prevent the vibration
of crane using the pulse motor and Mita[1979]
showed a minimizing time control method. S.B.
Kim[1992] studied the robust control for the c-
ontainer crane using servo system design method
and digital redesigne method.

Recently, in the tower crane a robust control is
required, that is, an insensitive control system
with respect to oscillation of cargo rope and dis-
turbance such as wind is required.

In this paper, as a basic study in order to
automize tower cranes, the dynamic model equat-
1on is theoretically induced in view of control
theory and a digital control method to implement
the automation is introduced. The model equat-
ion of the tower crane is induced by using Lagr-
ange’s equation and it is linearized at equillibr-
ium point. The control is realized by adopting
the optimal regulator method. The effectiveness
1s proved through the experimental results for the
oscillation control of cargo rope and the position
controls of trolley and boom by the implementati-
on of digital control using 16 bits microcomputer
for the designed optimal control law.

2. Analysis of Experimental
Apparatus

2.1 Configuration of Tower Crane Apparatus

The experimental apparatus used in this paper
is shown schematically in Fig 2—1. Boom is ro-
tated by a DC servomoter(DC 20V, 180rpm) with

a reduction gear and a roller type of trolley is -

moved by a DC servomotor(DC 12V, 200rpm).

On the other hand, to measure the boom rota-
tion and the pendulum oscillation attached to
trolley, three potentiometers(J 50S, +0.1%, 2k
Q copal) are used.

As the sensor measuring the moving motion of
trolley, a rotation type of potemtiometer{R20K,
0.25%) is used.
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2.2 Driving Circuit of DC Servo Motor

A pre-amplifier is used for inputing the output
voltage of D/A converter in the range of 0 to 5
voltage, and then amplifies the input voltage into
the range of -12 voltage to +12 voltage so as to
drive two directions such as positive or negative
of servo motor.

The plant outputs are converted using A/D
converter(PCL 812) and the control inputs are
made up through D/A converter. Control progr-
am is drawn up by C language.

2.3 Modelling

In order to analyze the dynamic characteristics
of the mechanism schematized as Fig 2—1, it is
assumed that the boom and the bar of tower crane
is constructed by a riged bar.

The model equation are induced by using the
following Lagrange’s equation :

d [ oT ] 3T 2D

dt | 2 2qi = agi
aD
P (2-1)

where qi . parameter(i=1,2,3-+")
T : kinetic energy
- U ! potential energy

D : friction energy
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900 L Weigth . Potentiometer {{{ ,,
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= {for p)

£ I"'Com ter motor
Potentiomete(for a) F0S0r

Fig. 2—1 Configuration of tower crane system
The dynamic differential equation for boom

can be get as the following :
(J+mL? + ml%2 + sin®p ) p—mLl cos p p
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+2ml® sin p cos p g + mLlp? sinp
+ Dy 0 =g g ceeeeereereeeseesiene (2—2)
ml?p —mLl cosp g —ml® sinp cosp §°
+Dpp +mglsing =0 (2-3)
The dynamic differential equation for trolley
can be get as following'?® :

(N+m) s—mlé cos « +mla?

sin a
+ D x = Ty trrrnerneeesees (2_4)
mi?é —ml% cosq + Dea + mgl
SN g = 0 rerereereeneneieanannn. (2_5)

Since egs. (2-2), (2-3), (2~4) and (2-5) are
nonlinear differential equation, in order to get the
state equation incorporating the well known
linear control theory, those differential equations
may be linearized at the equillibrium point such

where
x=xapgxapglT
A= r 0 0
0
0
0

OO OO
O OO

0
0
0
(-]
( (N+mg

N

0
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as § = (sing=g, cosg=1, g=0),
the following;
(N+m)x-mld +Dx= 1,
ml?é¢-mlx + Da ¢ + mgla =0 - (2-7)
(J+mL?) g —mLlp + Dy g

p =0 as

mi?p—mLlg + Dpp + mglp
................................... (2-9)
Therefore, the state equation for egs.(2—6)

(2~7)(2—-8) and (2-9) can be given by the form

Ty = Ax + Bu ceeeererreeerrrnneenees (2—10a)
Y= Cx woeveereessnesnensennnninne (2—10b)
0 0 0 0
0 0 0 o |
0 0 0 0
0 0 0 0
D D
X _ a 0 0
v (%)
D, _(N+m)D 0
Nl)( Nml® )O
0 [ g+ mL*)D _(Do)
O‘ JmL? )( ]
LD (Da)
_ s _
0 0( I ) (‘ ] )
C=r~10000000
01000000
00100000
00010000
UZE;);

215



3. Parameter Measurement of System

3.1 On Moving of Trolley

The hardware block diagram for the parameter
measurement is shown in Fig. 3—1The para-
meters of the tower crane are defined by the

following ;

vu . output of D/A converter
e . output of attenuation circut
ep - output of pre-amplifier

p < output of potentiometer

y . output of A/D

At i re e
Ref u_] D/A Vu ténuarlon e p e » Trolley
converter circuit amplifier
z
Y ap

A/D converter

potentiometer

Fig. 3—1 Control diagram for parameter measurement

The dynamic equation of trolley can be written
by

NZ+ szz Aoy U srrrererereremreneneaen (3_1)
and the control system of Fig. 3—1 can be
expressed as the following ;

Vi = l'o}( Z sreeeeeeeeranenteii e (3_.2)

U T L, toreeeereoreressemensnanananne (3-3)

Substituting egs. (3—2) and (3—-3) into
eq. (3—1), we can rewrite eq. (3—1) as following ;

Nroyx + Dyfor¥x = aox(r=yy) woooeeeeee (3-4)

Eq- (3—4) can be expressed as the following
diffential equation

Vet 285 One I+ wn

"= m2( [ ooeereererti e (3-5)

By comparing the output response eq. (3—4)
and eq. (3—5) for step reference input, parameter
N can be obtained as the following :

a0 7,7

N= LR T ) ................... (3—6)

and the friction coefficient Dx can be rewretten
as the follwing ;
4 <N

Tx

On the othet hand , let to the equation of
pendulum oscillation be as follows;

Jed +Dad +mglsing =0 (3-8)

Using sina = a for small «, we can derive

D, = =85 e (3-7)

the linearized equation with respectto § a
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about a =0 from eq. (3-8), then eq. (3—8) can
be given by
Jaﬁ +Dad +mgla= ............. (3_9)
and eq. (3—9) can be expressed as the
following dynamic differential equation ;

G t28,0 i t @5 =00 (3-10)
By comparing the output response eq. (3—9)
and eq. (3—10) for step reference input, J. and

Da can be obtained as the follow :

_— mglrza ------------------ —
Je =TT 370 (3-11)
De. = 25 «@ pa Ja .................... (3_12)

3.2 On Rotating of Boom

The dynamic equation of boom can be written

by;

Jo@ +Dog =aggu cooerereneees (3-13)
where
= _
vg = ro, g e (3 14)
US [y oevemereesmeenenenens (3_15)

and the dynamic equation of pendulum can be
written by ;

Jpﬁ+Dpﬁ+mglP?0 ........... (3-16)

By applying similarly the measurement method
of trolley parameters . N, and D, on the basis of
above equations, boom parameters, Jg and Dy
are obtained as follows;
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g = dol _ Ao} z'za
g wznﬂrol 4rol(ﬂ2+ 120)
Bl e, (3-17)
azg Iol
424]
Dy =2Js¢swng =240l
T
=Jﬂalﬁ .............................. (3_18)

On the other hand, pendulum parameters, Jp

and D, are obtained as follows;

mgl mgl £ %
— — <o (3—19
Je =, T =+ %) (3-19)
mgl
Dpz_}ﬂ’%”_ ..................... (3—20)
gl e

3.3 Measurement Result of the Parameter

From experimental results using the circuit of
Fig. 3—1, those element values of the state equ-
ation matrix which are deteriminated by paramet-
er values can be obtained as the following table.

Table 3—1 Element values of the state equation

matrix

elements of matrix calculated value
-mg/N —3.579
-D,/N —3.465
-D, /NI —0. 002846
—(N+m)g/Ni —29.73
-D, /Nl =7.700
—(N+m)D,/ Nml* —1.1563
~(J+mL>)g/ Nl —22. 689
—(J+mL*)D, / Jm}* =0.0116
-D,L/]Jl -1.378
-mLg/] —0. 500
-LD,/]l —0. 00025
-D,/] —0. 756

1/N 0. 869

1/Ni 1,932

L/Jt 0.27

1/] 0.148

Using the element values of state equation mat-
rix as Table 3—1 eq. (2-10) can be specified as
the following

BAQIOIMBIEX] Mg H4E '93d 128
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y—CX .................................... (3_21b)
0 0 0 o0 1 0 0 0
o o0 o o0 0 1 0 0
A=[0o o o o 0 0o 1 0
0 0 0 0 _0 0 0 1
0 -3579 0 0 -3.465 -0.0028 0 0
0 -29.73 0 0 -7.700 -1,1563 0 0
0 0-21.778 ¢ 0 -0.0116 -1.378
0 0-050 0 0 0 -0.00025 -0.756
f 0 0
0 0
0 0 10000000
B = 0 0 C= 010006000
0863 0 0010000TCQ
1932 0 00010000
L 0 02
0 01481

4. Design of Control System

The optimal control problem for a linear multi-
variable system with the quadratic criterion func-
tion is one of the most common problems in
linear system theory.

Althogh many kinds of functions can be consi-
dered as criterion fuctions, in this paper, only
the quadratic criterion function is adopted since it
is mathematically tractable and thus commonly
used for the design of controls for linear multi-
variable systems.

The above stated optimal control problem can
be expressed by the follwing” : For the linear
controllable multivariable system

dx(t)

dt

= Ax(t) + Bult) : AeR™",

Be Rnxn ........................ (4_1)
with controllable pair(A, B), we consider the
following quadratic criterion function
J=j:(\\x(t)\\6+ Bt nR) dt - (4-2)

where R is a symmetric positive definite
matrix, and Q is a symmetric positive semid-
efinite matrix.

The optimal control input for the controll-
able system(4—1) which minimizes the criteri-
on function{4—2) can be given by the refere-

ncesﬁ)])
() = =Fx(t) coeeerrrmmeremmerrmnnnnenee (4-3)
F=R!BTP
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where P is a positive definite solution satisfy-
ing the Riccati differential equation

AT+ PA+Q-PBR!BTP=0 - (4-4)

Substituing eq. (4—3) into eq. (4—1), the opt-
imal closed system is given by

d):i(tt) — (A—BRIBTP)X(t) ...........

and is called the optimal regulator.

5. Experimental Results

Using the optimal requlator method described
in the chapter 4, the experiment based on the real
time control by micro computer is carried out.
The sampling time for digital control is taken as

15 msec and the experiment results are shown in
the following two cases :

case 1 I Experiment for step reference

case 2 . Experiment for disturbance and step
refenence

5. 1Construction of Optimal Regulator

Let a symmetric positive definite matrix R and
a symmetric positive semidefinite matrix Q be
given as the following :

0 = diag[100, 100, 100, 100, 100, 100, 100, 100]

R = diag[50, 50]

Then a feedback matrix F which minimizes the
criterion function J can be obtained as

F= [ 1.41421D+00 1.51552D+00 1. 63684D—15 -6.08743D—15
-3.02248D~17 -5.29903D~17 1. 25911D+00 1. 41421D—00
7. 85244D—01 5. 37344D—01 -8.10156D—16 -5.10330D-15 ]
-2.21958D~16 -1.08198D~16 1. 23093D +00 1. 84179D+00
Ai(A-BF); [-1.93824D—01+j4.75705D+00, -2.88929D—01+ jO. 00000D+00

-3. 37073D—01+30. 00000D+-00,
-1. 56620D+ 00+ j5. 01839D+00,

5.2 Observer Design

In this experimental system, since only dist-
ance and angles can be measured using potent-
10meters, an observer estimating the other states
which cannot be measured, is required.

As an obsever to estimate the nonmeasurable

-6. 95959D —01 + ;0. 00000D +00
-2. 87235D+00-+ j0. 00000D +00]

states, 1n the design method, a minimal order
observer is used, i.e;

mi(t) = A m(t) + B y(t) + J u(t) - (5-1)

%(t) = Cm(t) + D y(v) (5-2)

In the case of assigning the poles of the obser-
ver as -1000, -1000, -1000, -1000, the matrices
of eq. (5-1) and (5-2) can be obtained as:

A =~ -1.00000D+03
0.00000D +00
0. 60000D + 00
L. 0.00000D+00

o
Il

~ -1.00000D+06
0. 00000D +00
0. 00000D +00
L 0.00000D+00
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0. 00000D + 00
-1. 00000D +03
0. 00000D +00
0. 00000D +00

0. 00000D +00
-1. 00003D+06
0. 00000D +00
0. 00000D +00

0. 00000D +00
0. 00000D +00
-1. 00000D + 03
0. 00000D + 00

0. 00000D +00
0. 00000D + 00
-1.00002D+03
0. 00000D + 00

Journal of KIS Vol. 8, No. 4, December '93

0. 00000D+0 —
0. 00000D +00
0. 00000D+00
-1. 00000D +03 —

0. 00000D +00 —
0. 00000D + 00
0.00000D+00 |
-1.0000D +06




— 1. 00000D + 00
2.22000D+00
0. 00000D+ 00
L 0. 00000D + 00

>
li

(@}
I

— 0. 00000D +00
0. 00000D +00
0. 00000D+00
0. 00000D + 00
1. 00000D +00
0. 00000D+00
0. 00000D +00
0. 00000D+00

lwel
I

— 1. 00000D + 00
0. 00000D 400
0. 00000D +00
0. 00000D +00
1. 00000D 400
0. 00000D +00
0. 00000D +00
— 0. 00000D + 00

0. 00000D + 00
0. 00000D + 00
1. 82000D + 00
1. 00000D +00

0. 00000D +00
0. 00000D + 00
0. 00000D +00
0. 00000D +00
0. 00000D+ 00
1.00000D + 00
0. 00000D+ 00
0. 00000D+00

0. 00000D + 00
1. 00000D + 00
0. 00000D + 00
0. 00000D + 00
0. 00000D + 00
1. 00000D + 00
0. 00000D + 00
0. 00000D + 00

Assume that eqs. (5-1) and (5-2) are discre-

tized by sampling time 15msec. Then those equa-
tion can be expressed as the following discrete

observer equation ;

— 3. 05029D~07
0. 00000D +00
0. 00000D +00

— 0. 00000D +00

>
)
Il

(wsh)
(W)
I

—-9.99999D +02
0. 00000D+00
0. 00000D +00
L 0. 00000D +00
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0. 00600D + 00
3.05029D—-07

0. 00000D +00
0. 00000D+00

0. 00000D +00
-1.00002D+03
0. 00000D +00
0. 00000D+00

A Ho{Hol o8t B30I XS0y Wst A7

00000D+00
00000D+00
00000D +00
. 00000D +00
00000D +00
00000D +00
00000D +00
00000D +00

ocrooooeo

. 00000D +-00
. 00000D + 00
. 00000D +00
. 00000D + 00
. 00000D +00
. 00000D +00
.00000D +00
. 00000D +00

O = OO O - O O

m(k+1) = AD m(t) + BD y(t) + D
ult) -
)A((t) = CD m(t) + ﬁD y(t) ............ (5_4)

0. 00000D+00
0. 00000D + 00
3.05029D-07

0. 00000D +00

0. 00000D +00
0. 00000D +00
-1.00002D +03
0. 00000D+00

0. 00000D +00 -
0. 00000D+00
0. 00000D + 00
0. 00000D +00
0. 00000D + 00
0. 00000D +00
0. 00000D +00
1. 00000D + 00—

0. 00000D +00—
0. 00000D 400
0.00000D +00
1. 00000D +00
0. 00000D +00
0. 00000D+00
0. 00000D+00

1. 00000D +00

0. 00000D + 00
0. 00000D+00
0. 00000D+00
3. 05029D—07

0. 00000D +00
0. 00000D +00
0. 00000D+00

-9, 99999D +02-
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5.3 Experimental Resuits

Using the optimal regulator proposed in Chapt-
er 4 where Q and R of the Riccati differential
equation are the weighting matrices, ex-

9.99999D—04
2.21999D—03
0. 00000D +00
— 0. 00000D+00

r 0. 00000D + 00
0. 00000D + 00
0. 00000D +00
0.00000D +00
1. 00000D +00
0. 00000D 400
0.00000D +00
L 0. 00000D +00

1. 00000D + 00
0. 00000D +00
0. 00000D +00
0. 00000D+00
1. 06000D + 03
0. 00000D +00
0. 00000D +00

— (0. 00000D+00

[DIST.]

0. 00000D +00
0. 00000D+00
1. 81999D—-03
9. 99999D—04

0. 00000D +00
0. 00000D +00
0. 00000D +00
0. 00000D +00
0. 00000D + 00
1. 00000D + 00
0. 00000D +00
0. 00000D +00

0.00000D+ 060
1. 00000D + 00
0. 00000D + 00
0. 00000D + 00
0. 00000D + 00
1. 00000D +03
0. 00000D + 00
0.00000D+00

1.5

1.2

-l
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7.1 10.6 14.1 17.7 21.2 M.

(a) Moving of Trolley

0. 00000D +00
0. 00000D +00
0. 60000D + 00
0. 00000D + 00
0. 00000D +00
0. 00000D+00
1. 00000D + 00
0. 00000D +00

0. 00000D +00
0. 00000D +00
1. 00000D + 00
0. 00000D +00
0. 00000D +00
0.00000D +00
1. 00000D +03
0.00000D +00

perimental results of the tower crane system de-
picted in Fig. 2-1 show Fig. 5-1 for step
reference, and Fig. 5—2 for disturbance and step

reference.

[THETA]

0. 00000D+00
0.00000D + 00
0.00000D +00
0. 00000D +00
0. 00000D +00
0. 00000D +00
0. 00000D +00
1. 00000D +00

0. 00000D +00 T
0.00000D +00
0. 00000D+00
1. 00000D +00
0. 00000D + 00
0. 00000D +00
0. 00000D +00
1. 00000D+03 -

8 0.0 3.3 7.1 10.6 14.1 17.7 21.2 24.8

{b) Rotation of Boom

Journal of KIS Vol. 8, No. 4, December "93




HY Mol o8t efg 3l XSaef Hs A7

[ALPHA] [RHO])

s.a 3.0

4.0 4.07

a.n{ .ot

2.0] 2.07

1.0 1.0
0.0 3.5 7.1 10.6 14.1 17.7 Z1.2 a4, $ 0.0 3.5 Y.1 10,6 14.1 17.7 1.3 348
(c) Pendulum Oscillation for Moving of Trolley (d) Pendulum Oscillation for Rotation of Boom

Fig. 5—1 Experimental results for step reference

[DIST. ] [THETA]
1.5 1.3
1.2 1.2 -
0.9 0.9
0.6 0.6
0.3 f 0.3
0.0 7.4 14.8 22.3 29.7 37.1 44.5 352, 0 0.0 7.4 14.8 22,3 29.7 37.1 44.3 52.0
(a) Moving of Trolley (b) Rotation of Boom
{ALPHA] [RHO]
5.0 5.0
4.0 a.0f
3.0 . . 3.0
4 ‘v vlmf
2.0 2.0
1.0 1.0
0.0 7.1 14.8 32.3 I.T 3T.1 .5 51 0 0.0 7.4 14.3 3.3 £9.7 7.1 49.5 52.0
(c) Pendulum Oscillation for Moving of Trolley (d) Pendulum Oscillation for Rotation of Boom
Fig. 5—2 Experimental results for disturbance and
step reference
6. Conclusion automation is introduced.
The model equation of the tower crane is in-
In this papers as a basic study to automize duced by using Lagrange’s equation and it is
tower cranes, the dynamic model equation is linearized at equillibrium point.
theoretically induced in view of control theory The control is realized by adopting the optimal
and a digital control method to implement the regulator method. The effectiveness is proved
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through the experimental results for the oscilla-
tion control of cargo rope and the position con-
trols of trolley and boom by the implementation
of digital control using 16 bits microcomputer for
the designed optimal control law.

It is observed from the experimental results
that the digital control method adopted in the
paper is effective for control of the tower crane
and it shows robustness properties to the
disturbance.

Furthermore, it may be expected that the result
of the paper can be contributed to automation of
industrial tower cranes in the point of view the
working efficiency and the guarantes of safety.
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