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New Approach for Surf Zone Dynamics
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Abstract (] A simple surf zone model is presented. The present model takes a quite different approach
by showing that wave action is conserved in the surf zone. This condition together with the conserva-
tion of energy enables us to develop a surf zone model that requires fewer empirical coefficients.
The model is capable of predicting surf zone properties and is presented in analytical forms for
the two-dimensional gradually-sloped bottoms. The analytical results were compated favorably with
available laboratory data. This surf zone model provides the surface current pattern of the vertical
circulation model, and consequently, significantly contributes to solving the three-dimensional current
pattern.
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1. INTRODUCTION

A common property of waves is their ability to
transport energy without the need of any net mate-
rial transport. In gravity waves, energy is propagated
through the fluid media via the oscillations of the
potential and the kinetic energies. When waves pro-
pagate through a region with currents, their energy
is also transported by the moving fluid. The general
appearance of the waves including wave height, le-
ngth and period will also be altered. It is commonly
observed that when the currents and waves are in
the same direction, waves are lengthened but with
reduced wave heights. Opposing currents, on the
other hand, shorten the waves but with increased
wave heights. This latter situation is particularly ha-
zardous for navigation. Moreover, our recent field
and laboratory wave measurements near an inlet

entrance seemed to indicate that waves could be-
come unsteady, or modulated, in a nonuniform cur-
rent field. This unsteadiness is more pronounced
if waves counter the current. Lee (1993) showed that
this phenomena could be described with help of
two new equations termed ‘wave action equation’
and ‘the kinematic conservation of intrinsic angular
frequency.’” In this paper, the application to surf
zone is given.

The flow properties in surf zone ‘are utmost com-
plex owing to the strong interactions among mo-
tions induced by waves, currents, and turbulence.
The present knowledge on surf zone dynmaics is
still inadequate and most of the models are rather
rudimentary. Most numerous developments in the
study of wave breaking have been made by appro-
ximation of the wave energy dissipation. These mo-
dels can be classified into two groups: one is based
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on the similarity of the wave breaking process with
other hydraulic phenomena such as a hydraulic
jump (Dally er al., 1984), a tidal bore (Battjes and
Janssen, 1978), etc., and the other is based on esti-
mation of the eddy viscosity (Mizuguchi, 1980) or
turbulence (Izumiya and Horikawa, 1984).

In this paper a simple surf zone model is presen-
ted. This model is based on the consideration of
wave energy balance and wave action conservation
so that the wave-current interaction is fully taken
into account. The model is capable of predicting
wave decay and yields mean surface currents both
in the across-shore and longshore directions. The
model is presented in analytical form for the case
of two dimensional graduaily-sioped bottoms.

Section 2 describes the wave energy equation and
wave action equation for the surf zone. It will be
shown that the wave energy equation originates
from the conservation of energy whereas the new
wave action equation is derived from the free sur-
face boundary condition. The wave energy equation
with the addition of an energy dissipation term is
derived and the validity of wave action equation
in surf zone is established. Subsequent sections are
devoted to solve decays of wave heights, mean sur-
face currents, and mean set-ups in surf zone. Whe-
never possible, the results are compared with avai-
lable experiemental data.

2. CONSERVATIONS OF WAVE ENERGY
AND WAVE ACTION IN SURF ZONE

2.1 Linear Waves on Slowly Varying Water
Medium
A velocity potential ¢ is assumed to exist such
that the water particle velocities are given by V¢
where V is the 3-dimensional differential operator

v=-L iy 9
ox ol 0z
It is assumed here that the dynamic free surface
boundary condition is still valid with the inclusion
of a head loss term. The kinematic and dynamic
boundary conditions to be satisfied at the free sur-
face, z=m, are, respectively,

N+ Vid-Vin—¢.=0 )

ot VOF+ez+gl=C0) @

where C(f) may depend on #, but not on the space
variables. We may take C(f)=0 without any essential
loss of generality. The subscripts ¢ and z indicate
the differentiations with respect to time and z-axis,
respectively. V, is the horizontal differential operator
defined as
0 ., 0 .
Vi=——i+——j
&
The cartesian coordinate system is used with origin
at the still water level, x(x, y) in the horizontal plane
and z directed vertically upwards. The velocity vec-
tor, U, v, w), is related to ¢ by
0 _ % 09

u=——,v= , and w=
ox leig 0z
The velocity potential, the free surface displace-
ment and the head loss are assumed to be compo-
sed of current and wave components.

O(X 2 )=0L% t2)Ted.(X2 1) 3
N D=1 )tendx. 1) 4
Ix,n=I(x; D+elx1) 6)]

where ¢ is an undefined factor used to separate
the current (such as tidal current, wave-induced cu-
rrent, etc.) from the wave parts of the velocity pote-
ntial. The ’; ¢, z* in the current part is used to recog-
nize that ¢, n. and I, may vary slowly over time
much longer than the wave period and it could
also accommodate small vertical variations in cur-
rents. Egs. (1) and (2) are then expanded in Taylor
series to relate the boundary conditions at the mean
water level z=n,

[nl + Vhd). th - ¢z]z=n( +
en] 2 (Vo Vin)+Vio|_ ++=0
az Z=Ne
|
Lo+ E(V(D)Z +gzt+gll -+
0 [, 1 Lo
2o+ (v =
.2 [t Vo +geel] | +-=0

Substituting Eqs. (3)-(5) into the above equations
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and separating for current and wave parts, we ob-
tain the followings retaining only the significant te-

rms:

0 =L 49,09, ©
(974 at (3 ¢
a1 V.0

n=—-Joo+—3] U

)= ‘% + (VIO T Vid Vi (8)
_ 1 Do _

le— g D " Iw (9)

where D/Dt=g/ot+ V0. Vi

It should be noted here that the terms retained
in the above set of equations are not necessarily
of the same order of magnitude for all general con-
ditions. For instance, the last term in Egq. (8) is,
in general, a higher order term than the first two
and only becomes significant when wave diffraction
occurs. The (o) term in Eq. (7) will become zero
in steady state. For slowly varying water depth, the
wave part of the velocity potential may be written
as

ox,2 )= j(z)(f)w(x, )+ Z(non-propagating modes)
(10)

where flz)=cosh k(h+z)/cosh k(h+n) is a slowly
varying function of x, k is a real value wave number
and &)w denotes the velocity potential at the mean
water level, termed as ‘surface potential.” For progre-
ssive waves, the velocity potential and the free sur-
face displacement can be written in terms of the
wave-averaged, slowly varying quantities as

du(x.z D=DA(x; 1)ie (11

nd{x H=alx; 1Y (12)

where a is commonly defined as wave amplitude.
The phase function is defined as y=(K-x—¢),
where K is a wave number vector including the
diffraction effects owing to the retention of the 3rd
term in Eq. (8), and o is an absolute frequency.
All slowly varying quantities are given here as real
numbers. Following the approach by Kirby (1983),

a virtual work term proportional to W(D¢./Dr) is
introduced to represent the head loss, where W is
a positive undefined coefficient indicating the stre-
ngth of the dissipation. We borrow this approach.
The relation between a and 4 can be established
by the dynamic free surface boundary condition
specified in Eqg. (9), which, after substituting Eqgs.
(11) and (12) into it, yields

—gn =+ Wy
—gae"=(1+ W)‘{—g,‘ +T,-9}ie)
=(1+ W)[odAéVHéW{% +ﬁS-VA}] 13

where o, is the intrinsic frequency including the
diffraction effects, defined as o,=w—U,-K, and U,
defined as V0, at z=n..

This equation states that a and A4 should have
a phase difference unless we impose the condi-
tion

oA +U;*VA=0 (14)

ot
Then, the relation between 4 and a can be given
by the following familiar form

A=—g— (15)
Op
where op is defined as (1+ W)o,. Similarly, substitu-
ting Egs. (11) and (12) into the kinematic free sur-
face boundary condition given by Eq. (8) yields

ob=(1+ Mgk tanh k(h+n)— Lo i 16

—"5 +V,(Ua)~4K-Vin. =0 (17)

Again, the last term in the above equations reflects
the wave diffraction effect and, under normal circu-
mstanaces, is of a higher order.

2.2 Wave Energy Conservation

It is assummed here that the surf zone is cohe-
rent in that the essential wave-like periodic motion
is retained and is quasi-stationary when time-avera-
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ged over wave period. Furthermore, the turbulent
motions are of much smaller time scale that the
effect on the flow of interest can be simply treated
as a dissipative force menifested by an eddy visco-
sity term. Thus, the familar Navier Stokes’ equation
of the following form can be applied:

aStU +V( p;’ +p+pg2> (VX U)X U+ pyW?U
(18)
where ¢’=u*+v'+w? and v is the kinematic visco-

sity. Let the surface displacement and the velocity
vector, U(y,,v, w), be decomposed into mean value,
wave and turbulent fluctuations, which are disti-
nguished by subscripts ¢ and w and prime, respecti-
vely; thus,

n=n+n'=n+n,+n (19
U=U+U=U+U,+U (20)

where the superscript is used to denote turbulent
averaging. After turbulent-averaging Eq. (18) beco-
mes

opU

2
p +v(i’i +p+pgﬁ>=p(v><fj)><0+pv,v2U

2
@n

where v, is the total viscosity including the eddy
viscosity due to turbulence. The superscript ~ is
omitted hereafter.

Taking the scalar product of U(u, v, w) with the
respective terms in the Navier Stokes equation and
summing the products give the mechanical energy
conservation equation of depth-integrated form with
dissipation:

[ A5 [ o[ B =

- f vl V?Udz 22)

By applying the kinematic boundary conditions at
the free surface and the bottom, we obtain

; o p;’ +pgz]dz+vhf [U<p;1 +p+pgz)]dz

+ f " ovU-V2Udz =0 23)

again, utilizing the Leibnitz’ rule of integration. The
last dissipative term can be treated as a head loss
term in the context of Bernoulli equation, ie.,

_ o2 _ .J’n
D f_hpv,U VUdz=V, _hpglUdz

where [/ is defined as the head loss due to turbule-
nce. Equation (23) can then be expressed as

jt [ > +pgz]dz+
V- f l[U(—p{- +p+pm+ pgl)]dz=0 4)

By applying Bernoulli equation with a head loss,

g’ 30
o+ gz 4 pel= — p2-
5 trtez pgl pat

Then, Eq. (24) can be expressed in terms of energy,
¢, and transport velocity, U, as follows:

—33 +V,(Uie) =0 ©5)
where

_ [

g= L[ : + pez)dz 26)

Ue=— J’ pU—dz 27

The velocity, U, shown in Eq. (27) implies the hori-
zontal components. Taking time average over wave
period, a wave energy conservation equation valid
even for surf zone can be obtained,

%E— +V,-(UE)=0 (©8)

in which the wave energy, E, and the transport ve-
locity U, are the counter parts of (pgwH?/8c) and
(Cg+U,) of non-dissipative case, respectively. Clea-
rly, this transport velocity is different from the non-
dissipative case and can be represented by

_ o H 9)
E g Op 8
U,=Cg+U,+Cg (30)
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where the first two terms constitute the transport
velocity due to non-dissipative forces whereas the
last term manifests the effect due to dissipative fo-
rce. This term, in general, should be negative indi-
cating a reduced energy flux due to dissipation. In
theory, it can be estimated from the time-averaged
energy dissipation term as follows:

Vi~ (CgoE)=D GD

where D is the time-averaged dissipation given by

7 -
D= ’ _hpv,U V2Udz =V, f _hpglUdz

23 Wave Action Equation

In this section, the wave action equation and the
conservation equation of intrinsic frequency are derived
from the surface boundary conditions using the
same definitions given in Egs. (11), (12) and (16).
Substracting Eq. (9)Xpgn/(1+W) from Eq. (8)X
p&)w, and ignoring the higher order term due to diff-
raction effect, we obtain

v Tona)—ole O _ g1
L ton) + - Cipman) = of S 1~ -} =0
(2)

where U, is current velocity of the mean flow at
the water surface level. Substituting Egs. (11) and
(12) into Eq. (38), the following equation is obtai-
ned:

_367 (Bie™)+ V- (UBie*¥)—

gktanhk(h+n), 1
oo™ ob ' 1+W}_0

where B is defined as

—_rg H
B 8 op (33)

Expanding and separating the harmonic motions,

,.em[ialti +v-(ﬁﬁ)]-0038” [—ﬁ;

gktanhk(h+n) 1 )
+ et
{ ()'D2 1+ VVJ]

which vyields the dispersion relation, cp?=(1+W)

gktanh k(h+v.), and the following wave action
equation:

%’; +v,-[UB]=0 (4
The above equation can also be derived directly
from Egs. (14) and (17). Although this wave action
equation deals with a quantity identical to that
shown in an alternative form of wave energy equa-
tion, the meaning of the equation is very different.
It was shown that the real quantity conserved by
wave energy equation should not be the wave action
but the wave energy. Wave action is a surface pro-
perty of waves governed only by the surface current
condition. In steady state, both quanities can be
same since the absolute frequency is constant every-
where.

Now if we substitute Eq. (15) into Eq. (17), the
following equation is obtained,

—a"a—‘t"’ +V-[Topd1=0 (35)

Eliminating 4 from Egs. (35) and (14), we arrive
at the final equation that governs the change of
the intrinsic wave frequency in a current field:

% + V- [l_J_;GD] =0 (36)

which is termed here as ‘the kinematic conservation
equation’, or simply ‘the conservation equation of
intrinsic frequency.’

3. WAVE HEIGHT TRANSFORMATION

Waves break when their height reaches a certain
limiting value relative to their length or water depth
as a result of wave shoaling on a slope. The broken
waves normally keep breaking as the water depth
decreases, finally reaching the shoreline. Svendsen
et al. (1978) divided the breaking zone into inner
and outer regions: From the breaking point and
for some distance shoreward, it is the outer region
where a violent transition of the wave slope takes
place large scale vortices are formed in this region.
After outer region, the inner region begins as the
wave becomes very similar to a tidal bore or a hyd-



New Approach for Surf Zone Dynamics 389

raulic jump. However, this wave breaking process
not yet been fully clarified since the strong currents
and turbulence are generated by the broken waves,
and interacted with wave breaking. In this section,
we suggest the new approach which takes account
of the wave-current interaction in the surf zone. Di-
fferently from most of the existing wave breaking
models, this new model provides the analytical exp-
ression of wave height over the wave breaking zone.

The wave energy equation given in Eq. (28), when
expressed in terms of wave height, can be written
as

Lo d J+9i[(Ce+ Tot-Coms? Hl-o
G7)

Now, again we assume that the surf zone retains
a quasi-steady state when integrated over wave pe-
riod, then the slowly varying flow: properties become
time independent, and the absolute frequency beco-
mes a constant. Accordingly, Eq. (37) becomes

V,,-[(Cg+ GA+CgD)—‘;& —ff]:o

and applying the wave action equation in the steady
state, the wave energy equation in the surf zone
is reduced to

vi[(ce+ cer% L ]=0 (38)
8 Op

The quantity corresponding to the dissipative force

is assumed here to be proportional to group velocity

at the breaking point, Cg, since wave height is

known to decrease steadily within the surf zone;

therefore,
Cgp=—pCsg (39

where B is a positive coefficient. Eq. (38) now beco-
mes

v,(Cg & = )=0 (40)

where the real relative group velocity in the turbu-
lent surf zone is estimated by

Cg*=Cg—BCg, @1

Eq. (40) is the final form of the proposed energy
transformation model. This model has only unk-
nown coefficient, namely, the dissipation coefficient,
B and is applicable to the general three-dimensional
topography and any arbitrary incident wave angles.

An analytical expression can be obtained for two-
dimensional beaches of uniform slopes. Eq. (40) be-
comes

%[(Cg—scw—c’é]:o )

where x axis is directed onshore. The cross shore
component of the above equation gives,

Cp
cosB(BCg—Cg)

“3)

Applying the dynamic free surface boundary condi-
tion given in Eq. (14) in 2-D steady state condition,
we have op proportional to the wave height in surf
zone. Eq. (43) can be written as
B
H=— 44
cos(BCei—Ce) “
with By determined later. O can be determined by
Snell’s law as

0=sin"!(C,sinb,/C,)

where C,=o/k is an absolute phase speed. Eq. (44)
is non-dimesionalized as

__1 By
H,Cg, cosO(B—Cg")

45

where H'=H/H, and Cg'=Cg/Cg,. Now we apply
two boundary conditions; H/H,=1 at a breaking
point d/dy=1, and H/H,=H, where Cg becomes
zero. We then obtain

H= 2
cosBl 1—Cg'(1—H,' /cost,)]

(46)

Applying shallow approximation to Cg' gives

1 H/
1—/d'(1—H,/cosy)

cos

@n

where d'=d/d, and d is defined as a total water
depth, (h+mn.). B is only one independent of the
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Wave Breaking
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Fig. 1. Effect of a parameter § on the dimensionless wave
height in the surf zone.

three parameters, H', Bx and B. If the value of H/
is determined from experiements, the other two are
expressed in terms of breaking properties as

cos0;

cosB,H,’
cosd,—H,’

Bur= cosB,—H,' HiCer B=
Figure 1 plots the dimensionless wave height in the
surf zone for different B values. Figure 2 shows the
comparison between the present theory and the la-
boratory data by Horikawa and Kuo (1966). The
dimensionless values of the wave height at the sho-
reline H,, are determined from the data; they are
022, 0.18, 0.14 and 0.14, respectively, for slopes of
1/20, 1/30, 1/65 and 1/80. It was found that the ex-
perimental values of H,’ can be closely approxima-
ted by v/tana with o being the slope of the beach.
Extensive laboratory experiments have shown that
the pattern of wave height decay across the surf

zone is strongly a function of the beach slope.
4. SURFACE CURRENTS

The main mechanism responsible for current ge-

neration inside the surf zone is suggested to be due
to the excess wave-induced momentum also known
as the radiation stresses. Vertical circulations are
known to exist as a consequence mass balance to
maintain a quasi-steady state. Solution conerning
longshore current and its distribution was originally
obtained by Longuet-Higgins (1970) and later modi-
fied and refined by numerious other investigators.
The model was based on the balance between the
friction forces and gradients in the radiation stress.
Cross-shore current modeling is more recent effort
based on such ideas as wave set-up, undertow, etc.
In this section, the surface current vectors in the
surf zone containing both cross-shore and longshore
components are solved by the applications of wave
action equation and the steady state wave energy
equation:

v-(aﬁ)zo, V-[(BCgb—CgEEJZO (48)

Op k op

Elimilating H*/op from the above equations we ob-
tain a pair of simple equations for surface currents,

u;=Bo cosB(BCgy— (g), =P sin B(BCg,—Cg)
49)

where u, and v, denote, respectively, the cross-shore
and longshore components of surface current vector
at the mean water level, Uy; Bo and B, are constants
of proportionarity.

When expressed in terms of wave height the
above pair of equations become,.

sin@ Cp

u;=BoBH%. L s (50)

which show that while both onshore and longshore
current components are inversely proportional to
the wave height sqaured, only longshore component
is a function of wave angle. The surface current
equations can be more conveniently expressed in-
non-dimensional forms,

u/=Bocos O(P—Cg'), v,/ =P, sind(B—Cg") '&)))

where u/=u/Cg, and Cg'=Cg/Cg, Applying the
shallow water condition, we have,
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Fig. 2. Compunson with laboratory experiments presented by Horikawa and Kuo (1966).

u'=Byc QB—\A), v/ = ____BLZEI}GD HB—/)

(52)

Figure 3 illustrat:s the effect of  on the dimen-
sionless surface onshore current as given by Eq.
(52). Unfortunately, no experimental data are avai-
lable at present. Figure 4 illustrates the effect of
B on the dimensionless surface longshore current

as given by Eq. (52). Figure 5 compares the theory
with the laboratory longshore current data measured
by Visser (1991). It should be pointed out here that
the Visser's data are depth-averaged and theory is
for surface current. In the longshore direction, ho-
wever, one expects the vertical distribution to be
rather uniform. The theory appears to fit the data
remarkably well. One of the major advantages of
the present model is that it requires only one empi-
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Surface Onshore Current
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Fig. 3. Effect of a parameter B on the dimensionless sur-
face onshore current in the surf zone.

Surface Longshore Current
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Fg. 4. Effect of a parameter B on the dimensionless sur-
face longshore current in the surf zone.

rical coefficient to control the magnitude and elimi-
nates the troublesome mixing coefficient appeared
in most of the existing theories. In order to fit the
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Fig. 5. Comparison of longshore current with laboratory
experiments presented by Visser (1991).

data one often has to assume large mixing strength
without justification.

5. SET-UP AND SET-DOWN

In steady state, the wave set-up in surf zone is
estimated here by the alternative form of ‘the kine-

‘matic conservation of intrinsic frequency’ and the

continuity equation,
v-(UH)=0, V-[U(h+n)]=0

It is assumed here that the magnitude of the depth-
averaged return current beneath the mean water le-
vel, U, is proportional to the onshore surface cur-
rent, U, then

H=x(xXh+n.) (53)

where k(x) is, in general, a spatial dependent coeffi-
cient. If x(x) is a constant across the surf zone, the
above equation is simply the frequently adopted ex-
tension of Miche’s criterion. From Eq. (53) the set
up can be estimated as
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Set-Up
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Fig. 6. Effect of a parameter B on the dimensionless set-
up in the surf zone.

j— H —
Ne= ) h (54)

or in non-dimensional form assuming n.0c,)/h,<<1,

[ K(Xb) ot
Ly H'~h (55)

where n'=n./h, and x, indicates the breaking point.
Here the definition of the mean water level is limi-
ted where the bed is at all times covered by water.
The set-up or set-down can be computed at once
when the wave height within the surf zone is deter-
mined.

Figure 6 illustrates the effect of B on the dimen-
sionless set-up given by Eq. (55) for a constant k
over the surf zone.

There is one notable feature of the model that
is generally lacking in most of the existing models.
The model predicts rather mild, sometimes near co-
nstant, set-down in the transition zone immediately
after breaking point where the wave height drops
sharply. This phenomenon referred to as transition
region ‘paradox’ has been noted as a significant
feature in the transition region (Basco and Yama-
shita, 1986; Theike, 1988). The conventional theory

of balancing the momentum due to radiation stress
should produce a jump of set-up in the transition
region where wave height reduces sharply. Labora-
tory data, on the other hand, showed nearly contant
set-down across the transition region, where the
wave height is reduced nearly proportional to the
reduction of water depth, as indicated by Eq. (54).
This phenomenon can be further clarified through
the momentum balance (Lee, 1993).

6. CONCLUSION

The wave action equation has been derived from
the surface boundary conditions. The dispersion
equation describes the wave fluctuating motion,
whereas the wave action equation describes the slo-
wly varying motion. The wave energy equation and
the wave action equation were applied to the surf
zone observed in steady state. Both equations in
surf zone have been proven to provide practical
theories to predict wave height, surface onshore cur-
rent, and longshore current on the straight coast
beach. The variation of wave height is determined
by the finite wave height reaching a shoreline. For
the nearly normal approaching waves, it is notable
that surface onshore current is inversely proportio-
nal to the wave height, and the surface longshore
current is not only proportional to the wave angle
but also inversely proportional to the wave height.
The set-up model yields the Miche’s type wave
breaking model and predicts rather mild, sometimes
near constant, set-down in the transition zone im-
mediately after breaking point.
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