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A Mathematical Model for Nonlinear Waves due to
Moving Disturbances in a Basin of Variable Depth
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Abstract (] Mathematical models of nonlinear waves due to disturbances moving with the near critical
velocity in a basin of variable depth are discussed. A two-dimensional model for waves of arbitrary
amplitude is developed. In the case of small perturbation it is shown that nonlinear ray method

can be applied to obtain the generalized forced Korteweg-de Vries equation.
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1. INTRODUCTION

The forced Korteweg-de Vries equation is now
one of canonical models for describing the resonant
excitation of nonlinear waves by moving perturba-
tions in a basin of constant depth. It was applied
for surface waves due to atmospheric moving pertu-
rbations or an obstacle in a flow (Akylas 1984; Cole
1985; Wu 1987; Lee et al. 1989; Wu and Wu, 198%),
for ship waves in a shallow channel (Mei, 1986;
Mei and Choi, 1987), for internal waves in a strati-
fied flow due to an obstacle (Grimshaw and Smyth
1986; Melville and Helfrich 1987; Mitsudera and
Grimshaw 1990; 1991), for atmospheric waves due
to a local topography (Patoine and Wam 1982;
Warn and Brasnett 1983). Resonance between waves
and perturbations leads to a complex picture of
wave radiation which depends on the ratio of para-
meters of nonlinearity, dispersion and forcing, For
engineering applications it is necessary to take into
account the effects of variabillity of basin depth,
because the near critical regime of fluid motion oc-

% Aol A AR 7 X2 o)FsHs T s8] HYHE v
A3 7} T‘EPE] E“&“ﬂ s =93} Jodug ke date) 2a14
3 mskidwle] dukal®l Korteweg-de Vries 4]-& <&d H4d 4

wo] Auslgleh vja
AeE et

curs in coastal zones.

On the other hand, the “free” Korteweg-de Vries
equation, as it is known, is applied for the descrip-
tion of long waves in coastal zones (Mei. 1989; Peli-
novsky, 1982; Voltzinger er al. 1989). Its generaliza-
tion for the basin of variable depth was made by
Ostrovsky and Pelinovsky (1970) and Johnson
(1972). In this context it is interesting to study the
case of moving perturbations in a basin of variable
depth.

In this paper different models for nonlinear wa-
ves in the basin of variable depth due to moving
atmospheric perturbations are discussed. In case of
small quasi-plane perturbation it is proved that the
generalized forced Korteweg-de Vries equation is an
appropriate model.

2. NONLINEAR BOUSSINESQ-LIKE
MODEL

Let us consider the potential motion of fluid un-
der the action of atmospherical perturbations. The
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governing equation is the Laplace equation for po-
tential &:

Vd+~— =0 ()

with kinematic boundary conditions on uneven bot-
tom

VOVh+ %‘f =0 (z=—h(x, ) 2)

and on free surface
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and the dynamic boundary condition on the free
surface
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Here V denotes the horizontal gradient and 8pu.,
is the variation of atmospheric pressure above sea
surface which is an arbitrary function of horizontal
coordinates and time. This model is exact for arbit-
rary wave motions (Cauchy-Poisson problem), but
for practical realization it is difficult to solve the
Laplace equation in a domain with unknown mo-
ving boundary and uneven bottom. As a result, only
linear theory of waves generated by moving pertur-
bations has been developed (such situation is simi-
lar to the generation of ship waves). We will conce-
ntrate our attention on the generation of nonlinear
waves in shallow water. Nonlinearity in shallow wa-
ter will be significant only if perturbations move
with transcritical speed (the Froude number app-
roaches to 1). Many researchers have investigated
the problem for a basin of constant depth. analysis
has shown that the generated waves are long so
that we may simplify the problem by using the ap-
proximations of nonlinear shallow water theory;
small bottom slopes and smoothness of wave pro-
file. Such a model has been developed for waves
of small but finite amplitude (Boussinesq-like mo-
dels) and will be here generalized for cases of une-
ven bottom and arbitrary wave amplitude.

As usual in shallow water theory we shall expand

the potential in Taylor series:
S=DD,x. y, 1) z+hx, p)I o))
0

where all the functions @, are unknown. Substitu-
tion into Eq. (1) gives the following recurrence rela-
tions

(n+2)n+ D1+ (VARI®,
+(n+ 1)2VD,. VA+®,. Vh]+Vid,=0 ©6)

Accordingly, we have only two independent func-
tions: ®, and ®,. From the bottom boundary con-
dition (2), we find P;:
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and thus only ®, is independent. It is straightfor-
ward to show that
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and so on. The expansion, Eq. (5), converges only
if the assumptions of shallow water theory are satis-
fied, but the wave amplitude can be arbirary. After
substitution of Eq. (5) in the kinematic (Eq. 3) and
dynamic (Eq. (4) boundary conditions, we can ob-
tain two-dimensional equations for @, and n. It is
convenient to take gradient of Eq. (4), and then
it turns out to be an equation for the horizontal
velocity V@,

9 yp+ (VOV)VD+ P go® £Vn
ot 0z o0z
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It is recalled that V@ and 9®/9z on sea surface
are represented by series:
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Vo =5 [V®, +(n1+ 1)@, , VhI(h+ny (12)
0
"7? =S+ 1)@, (h+ 1) (13)

where we may take only the bounded terms no
higher than the second order of basin depth. This
procedure has been used in many works without
taking excitations into account. It is convenitnt to
introduce the depth-averaged velocity defined by

1

=

f | vz (14)
By substituting Eq. (12) into the above, we have
U=vd,+ %VCD,(h +1)+®,Vh+ %vcbz(h +1)
+®.Vah+1)+ %V(D;(h + 0+ ®VA(h+n)
+%V(D4(h+n)“+<1>4vh(h+n)3+--- (15)
With the help of the recurrence formula, it can be
expressed in terms of Vd,. By utilizing the assump-

tions of shallow water theory, we can obtain the
following approximation

T .
VO,X i+ 2“ (AR +2VAV)E]

+(Vh)zﬁ+h(;]yA&'+--- (16)

Substituting Eq. (16) into Egs. (12) and (13). we can
transform Egs. (3) and (11):

% +V-(HiB=0 (17)
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where

H=h+q (19)
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We can also derive the pressure with the same ac-
curacy:

1,
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In the absence of atmospheric perturbation in a
basin of constant depth, this system reduces to the
model by Su and Gardner (1969). was generalized
to the case of smooth bottom (Zheleznyak, 1983,
see also Voltzinger et al, 1989). Our model includes
effects of both smooth bottom and atmospheric pe-
rturbation. The main advantages of this model are
as follows: (1) As a two-dimensional model it is
much simpler than the original three-dimensional
model. (2) It describes waves of arbitrary (not only
small) amplitude which may be very important for
the study of resonance effects of wave generation
by moving perturbations.

Limitation of this model is related to the smooth-
ness of wave profile (we used small parameter of
dispersion) and it is nesessary to check it in nume-
rical computations.

In case of small amplitude waves, the dispersion
term in Eq. (18) can be simplified

5:%%[v div (h a’)—%—v div @] (24)
and without atmospheric perturbation it was obtai-
ned in the paper of Peregrine (1967), see also Mei
(1989).

As it is known, the smallness of dispersion in
the frame of nonlinear-dispersive models correspo-
nds to the following Taylor series of the exact linear
dispersion relation

B 3

h
) (25)
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and this form is not convenient for numerical cal-
culation because it leads to an instability at large
wave numbers. It is known to be more convenient
to use the improved dispersion relation in the
form
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which is valid for k h<2 as Madsen et al. (1991)
demonstrated. They have also proposed nonlinear
equations of improved model. Because the atmos-
pheric factor can be included in nonlinear disper-
sive models as an additive term, we can follow this
line. Final result (in one-dimensional case) takes
the form

0 0 5 an P Hu
L H+-L HuH+gH-—
a,( u) ax( )t+g ™

ax’ ot
1 63 Hu H ODam
—— —=—— = 27
6 oot h p o @

1
——p
2

Other variations of approximate dispersion rela-
tion for water waves are possible (Hunt, 1979; Koz-
lov and Pelinovsky, 1989), and they can be used
for developing different nonlinear-dispersive wave
theories.

For the description of nonlinear waves generated
by moving atmospheric perturbations in a basin of
variable depth, models of different classes of appro-
ximations can be used. For example, Egs. (17) and
(18) can be used for very long waves of arbitrary
amplitude; Egs. (17) and (18) with dispersion term
in the form as given by Eq. (24) for long waves
of small amplitude; and Eqgs. (17) and (27) for mo-
derate length waves of small amplitude.

3. NONLINEAR RAY METHOD

Further simplifications are possible for weakly
nonlinear and weakly dispersive waves generated
by quasi-plane perturbations of atmospheric pres-
sure when the wave field is practically one-dimen-
sional. In this case the order of equations of nonli-
near dispersive model can be reduced by one. It
is usual to use ray methods which are well develo-
ped for linear approximation and generalized on
weakly nonlinear media (Shen, 1975; Ostrovsky and
Pelinovsky, 1975; Engelbrecht er al, 1988). It is con-
venient to transform the system of Egs. (17)(18)
with dispersion term (24) to single wave equation

for water level

‘2—2;2]— V- [*Vn]=0M, %) (28)

where
Q=3 V(i) + V- hGEV)H]

=4 \ tm
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where ¢=+/q h(x, y). We introduce a variable s=1(/)
—t instead of time r, where t is to be determined
later in the text. In terms of new variables, Eq. (28)
will take the form

AR % % - % [2c°VTVn+1V- (c?Vr)]
—V-(Vn)=Q (30)

In order to determine the terms of this equation
explicitly, we need some physical assumptions. As-
sume that the radius of curvature of the wave front
is large (a quasi-plane wave approximation) and
the depth varies slowly (mild bottom slopes), and
then it is natural to accept that the solution depe-
nds, primarily, on one coordinate, s, while 7-depen-
dence is weak. Consequently, the terms containing
second-order derivatives and the squares of first-or-
der derivatives with respect to the slow coordinate
r may be neglected in Eq. (30) to the first approxi-
mation. Then Eq. (30) can be written into two inde-
pendent equations:

(Vop=c*=(gh)™" @3
% (262VTVn+ V- (V)] +0=0 (32)

Eq. (31) is well known in the linear theory of
long waves in a basin of slowly varying depth. It
is an eikonal equation (see, for example, Mei, 1989).
Eq. (31) is a nonlinear partial differential equation
for T of first order and it can be solved by the
method of characteristics and rewritten in the form
of Hamilton-Jacobi equation. Following Mei (1989),
we take a more elementary approach. Let y(x) rep-
resent one of the rays, then its slope on plane (x,
y) must be given by
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b
o (33)
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After substituting it Eq. (31) and its derivatives, we
obtain

LY
dp ¢ ]E _ dy \roc”!
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It is a nonlinear ordinary differential equation of
second order for the ray y(x) and we need two ini-
tial conditions; initial point y(x,) and initial direc-
tion dy/dx(x,). The ray path can be solved analytica-
lly or numerically. Many specific examples of ray
patterns are discussed in the book by Mei (1989).
Using rays as a reference coordinate /

l=f\/1+<%>2 dx 35

and find the eikonal t

T= f di (36)
)

it is another form of the celebrated Fermat's princi-
ple and t is the time of wave motion along a ray.
It should be emphasized that in this approximation
the ray picture does not depend on weak dispersion
and not on weak nonlinearity.

Let us consider now Eq. (32). Flow velocity in
function Q may be expressed by means of formulas
from a linear theory of long waves:

(37

where 7 is a unit vector along a ray. Taking only
derivatives of coordinate s into account we can write
the main terms in Q:

3 a-’-nl _}_i _(9.47]___@_ M
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and then the Eq. (32) can be integrated
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Using the Ostrogradsky-Gauss theorem in curvili-
near ray coordinates we can calculate div V+(Vz).
1db
V(Vo)=——— 40
(Vo) b dl ¢ (40)
where b is called the ray separation factor (see book
by Mei, 1989) or differential width of ray beams.
Eq. (39) may be written in the form
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Eq. (41) is a modification of the known forced Kor-
teweg-de Vries equation. In fact it reduces to the
forced Korteweg-de Vries equation for plane waves
in a basin of constant depth.

Eq. (41) at h=const is a basic equation for descri-
ption of wave generation by moving perturbation
in many papers. On the other hand, Eq. (41) with
P..=0 is often used for long wave evolution in
the coastal zone (Pelinovsky, 1982; Voltzinger er al.,
1989; Mei, 1989).

Mention should also be made of conservation
laws for Eq. (41). It is known that there exist an
infinite number of conservation laws for the Korte-
weg-de Vries equation with constant coefficients,
which is indicative of its full integrability (Whitham,
1974). A modified forced Korteweg-de Vries equa-
tion (41) possesses only one conservation law:

(@1

toc
h'vie (s Nds=const (42)

which can be used to validate numerical calcula-
tions.

When analysing the wave propagation in basin
of variable depth, one must bear in mind the follo-
wing significant circumstance. The formulas presen-
ted above are valid only when the rays do not inte-
rsect (b does not turn out to be zero). Such situa-
tions are typical in the coastal zone with simple
geometry when waves propagate in the region of
decreasing depth. If the waves encounter regions
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of increasing depth, the rays will intersect due to
refraction, thus forming caustics. Linear problems
of monochromatic wave transformation on a strai-
ght caustic can be solved exactly, see for example,
Mei (1989). The solution is expressed in terms of
the Airy function. The amplification factor (it is
proportional to A~") is not large for long waves,
therefore, wave can be considered as weak nonli-
near everywhere, including the caustic zone. Some
nonlinear corrections to the Airy function were
made in the book of Engelbrecht er al. (1988). It
is more important that the wave form must be cha-
nged in caustic zone even in linear theory. The ref-
lected (or transformed) monochromatic wave has
the same amplitude as the incident wave but differs
from the latter in phase by n/2. Such a phase trans-
formation is equivalent to the Hilbert transforma-
tion for wave of arbitrary form

dt
s—T

5= (e @)
and this equation can be used for describing the
nonlinear wave transformation in a caustic zone
having the size order of wavelength. Accuracy of
this approach was checked by comparison with nu-
merical modeling of cylindrical solitary waves (Peli-
novsky and Stepanyants, 1981; Chwang and Wu,
1977).

Egs. (33), (41) and (43) consitute a complete sys-
tem of equations of a nonlinear-ray theory of wave
generation and transformation in a basin of varia-
ble depth.

4. CONCLUSION

A physical-mathematical model for the nonlinear
wave generation by moving atmospheric perturba-
tions and its transformation in the coastal zone
have been developed. It is based on a modified
forced Korteweg-de Vries equation. The rays in this
model are determined from the linear theory of
long waves and the wave amplitude from the nonli-
near evolution equation. The model is supplemen-
ted by a special treatment which allows the calcula-
tion of wave transformation in the caustic zone.
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