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Response of Cable-Buoy Systems to Directional Random Waves
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Abstract [ Numerical models of directional wave spectra for the analysis of offshore structural cable
responses are verified. Alternative spreading models are used to predict wave-induced flows in water
and for mooring systems. Hydrodynamic wave forces upon cable are estimated, using a Morison
formula encompassing considerations for drag and for inertial forces both parallel and tangential
to the slope of the cable. Numerical analysis for directional random waves, including consideration
of displacement and velocity, trajectory, phase plane response, and tension are shown for mooring
system cable responses at both the tether point for a buoy and at the anchor point. The effects
of wave forces for different drag coefficients, various significant wave heights, and selected wave
parameters are considered in the analysis. For the specific systems considered in the examples, it
is demonstrated that wave period and height, as well as wave spreading function parameters and
drag coefficients, have an important effect upon the dynamic responses of the cable-buoy systems.
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1. INTRODUCTION

The subject of this study is the simulation, for
ocean environment, of the nonlinear responses of
cables coupled to small bodies such as buoys. Since
an increasing number of structures are sited in deep
ocean waters in areas subject to hazardous environ-
mental conditions, cable-supported structures have
become increasingly important to offshore designers.
These structures are commonly subjected to irregu-
lar waves which are frequently nonlinear. The kine-
matic and dynamic analyses of cables in the ocean
highly nonlinear and may be attributed to the inhe-
rent properties of the cable response, including sub-
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stantial displacements, lack of compressive stiffness,
loading conditions, or other material characteristics.
Additional nonlinearities may be introduced for
reason of cable position or orientation-dependent
loads and boundary conditions. Thus, numerical
methods are typically utilized to analyze the deplo-
yment of cable systems, including submerged cable
arrays with redundant members.

The analysis and design techniques developed for
oceanic cable systems were subject to extensive con-
sideration by Chiou (1985), who reviewed the expe-
rimentation (Kern et al., 1977; Yashima et al., 1989)
on which they were primarily based as well as a
number of mathematical models (Webster and Palo,
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1982; Lo, 1982; Tuah, 1983). It was noted that the
use of mathematical models usually results in exte-
nsive computer programs that require comprehen-
sive facilities and high computational costs (Leo-
nard and Nath, 1981; Palo, 1985). Thus, the conduct
of experimental tests, although invaluable for the
provision and validation of data for mathematical
models, requires considerable time and expense.

For understanding nonlinear effects in directional
spread seas, some progress has been achieved (e.g.
Weber and Barrick, 1977). The spreading function
for a directional spectrum was evaluated by given
data from a tilt and roll buoy (Longuet-Higgins er
al. 1963) which were used to determine the first
five Fourier coefficients. However, spreading func-
tions obtained by experimental data have a limita-
tion.

Directional spectra can be hindcast using nume-
rical models (e.g., Cardone er al., 1976), and the di-
rectional characteristics of hindcast spectra for sto-
rms have been verified. Following field measureme-
nts taken in the Gulf of Mexico (Forristall er al.,
1978), researchers (Niedzwecki and Whatley, 1991)
presented the functional forms encompassing the
cosine power, exponential and exponential series fa-
milies of directional spreading functions.

For the current investigation, an algorithm for
directional waves (Niedzwecki and Whatley, 1991),
is coupled to an algorithm capable of simulating
the nonlinear static and dynamic response of a si-
ngly-connected cable-body system in three dimen-
sions (Chiou and Leonard, 1991). The configuration
of the cable system consists of multiple cable seg-
ments and in-line buoys, dynamic responses of
which are solved in the time domain. For reason
of time evolution, the governing system equations
are posed as combined boundary-value and initial-
value problems. By introducing a velocity variable,
the problem is transformed into the phase domain
as a boundary-value problem at a discrete time.

Extensible cable segments are considered and the
fluid loading is variable spatially. The hydrodyna-
mic forces from directional waves are calculated by
the Morison equation, which considers relative ve-
locity, acceleration, and. cable orientation. Subject
to the conditions described above, this study focuses

upon modelling directional spreading functions to
investigate the cable system response in the ocean
environment.

By discussion of directional sea models, illustra-
tion of similarities and differences between modi-
fied-cosine model and wrapped-around Gaussian
model is presented. The wave kinematics based on
sea models is applied to cable system as a hydrody-
namic loading.

2. CABLE AND LOAD MODELS

In general, the statics and dynamics of cable sys-
tems are difficult problems to solve from the view-
point of structural analysis. When they are analyzed
for a hostile ocean environment, they are highly
nonlinear from the viewpoint of both structural me-
chanics and hydrodynamics. To deal practically
with either an analysis or a design problem, certain
simplifying assumptions are necessary. The objective
of this section is to set assumptions and to derive
the governing equations.

2.1 Basic Assumptions for Cable-Buoy Systems

Cable-buoy systems in this study are subject to
the following assumptions:

1) The cable segment is cylindrical in cross-sec-
tion and is assumed to be a small body in compa-
rison to incident wave lengths. Thus, calculation of
the hydrodynamic forces by the Morison equation
is valid (Sarpkaya and Issacson, 1981).

2) The cable segment has no flexural or torsional
stiffness. Therefore, only uniaxial tension is consi-
dered.

3) Only small elastic strains of the cable are con-
sidered.

4) Hydrodynamic coefficients for the cable are
assumed to be constant.

5) The cable segment may be curved in three
dimensions.

6) No cable-bottom interaction is considered. In
other words, except at the anchor, the cable segment
is assumed to be in the fluid domain at all times.

7) To enable use of linear wave theory, the sea-
floor is assumed to be flat and impermeable.

8) Intermediate and boundary bodies are assumed
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to be small spherical bodies, such that the Morison
equation is applicable and hydrodynamic coefficie-
nts are the same in all directions.
9) Only translational degrees-of-freedom (ie, su-
rge, sway, and heave) for the bodies are considered.
10) All cable segments are attached to the centers
of gravity of each body.

2.2 Governing Equations for Cable-Buoy Systems

Loads due to gravity, bouyancy and waves for
a submerged cable system in the water are conside-
red as environmental loadings. The buoyancy force
acts in opposition to the forces due to gravity. Gra-
vity and buoyancy forces are uniformly distributed
along the arc length of the cable segment.

Hydrodynamic loads for cable may be grouped
in three types: 1) drag forces, 2) inertia forces, and
3) lift forces (note that the latter is not considered
for this study). Drag forces are due to skin friction
and form drag resulting from vortices or eddies.
and from separation of flow. The Morison equation
for the estimation of the horizontal wave forces on
a fixed vertical pile is written as

ou

F:CIAIF +Cp Apllulu (D

where

Ar=pnD%/4

Ap=p D2

F=hydrodynamic force per unit length of the
vertical cylinder

p= mass density of fluid

D=pile diameter

Ci=Inertia coefficient

Cp=Drag coefficient

The original Morison equation is empirical. The
drag forces may be decomposed into a drag tangent
to the cable, and a drag perpendicular to the cable
(ie., in the plane formed by the cable and the rela-
tive fluid velocity vector). The drag along the cable
is equal to the skin friction of a flat plate having
the same surface area as that of the cable.

The drag, perpendicular to the cable consists of
both frictional and form drag. For the accelerating
fluid, the combination of the drag force and inertia

force is given by the semi-empirical Morison equa-
tion, in which the in-line drag and inertia coefficie-
nts are usually taken as functions of a Reynold’s
number.

Improvement of the Morison equation in terms
of accurately predicting wave forces due to relative
water particle velocity and acceleration vectors on
small members has been described (Sarpkaya and
Issacson, 1981). Using the added mass coefficient,
rather than the inertia coefficient, the modified Mo-
rison equation including tangential drag term for
an oscillating cable in an oscillating flow is descri-
bed as
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where, C, is the added mass coefficient and F; is
i* component of hydrodynamic force per unit arcle-
ngth of cable segment u/, gu"/gt. 9x/"/ot and §°x/"/ot
% are the components of wave and cable velocity
and acceleration normal to its axis, u/ and gx//gt
are the components of wave and cable velocity ta-
ngent to its axis.

2.2.1 Cable Segments

The equilibrium equation for dynamic forces on
an infinitesimal length dS at an arbitrary material
point along the cable segment is defined as (Ablow
and Schechter, 1983)

FEn s
S T+ (1+8)\7Vb+?’+ (Ha)_l’ 0 3)

where

S =the arc length along the stretched cable,

T =the tension,

Wb: the buoyant weight per unit length of unstre-
tched cable,

F =the hydrodynamic loads per unit stretched
length,

T =the d’Alembert force, and

¢ =the strain.

2.2.2 Boundary Body
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Assuming a small spherical body for the boun-
dary body, the Morison equation is used to calcu-
late hydrodynamic forces due to waves. The equili-
brium equation for the boundary body may be wri-
tten as (Chiou, 1989)

~M+ pCAV)j%—+(CA+ p V%ut—" +ptPAY
+ Pyt Wi, — KX — X)) Ti=0 Q)
i=12 3
where

M =total mass of the intermediate body,

W =wet weight of the intermediate body,

V =volume of the intermediate body,

C, =added mass coefficient (i.e., the same in all
directions),

q =u+v+X; i* component of relative velocity,

q =(x " k=1, 2, 3,

B =05 o] Ao CD.

A, =drag area of the intermediate body (ie., the
same in all directions),

Cp =drag coefficient of the intermediate body (i.
e., the same in all directions),

K =stiffness constant of the spring that may be
attached to the intermediate body,

X? =coordinate where the spring is unstretched,

P{(t)=time-dependent concentrated load, and

P, =constant concentrated load.

There is only one cable attached to the boundary
body. The selection of the sign of T is dependent
upon the location of the boundary body. The posi-
tive sign is chosen if the body is located at the
starting end of the cable segments relative to the
assigned direction of the cable scope coordinate;
the negative sign is used if the body is located at
the terminal end of the cable segment. The nonli-
near interactions between the body and the cable
need to be addressed.

2.3 Proposed Directional Sea Models

2.3.1 Directional Spectra

It is common to express the directional spectrum
with the unidirecitonal spectrum in the form of a
frequency-dependent term multiplied by a spreading
term.e.g.

S(£,8)=5S(H) H(f.0) do (5)
where
j " H(1,0) do=1 ©6)

This indicates that no energy is added by the
spreading function, H(f, 8) rather that it is a mecha-
nism to distribute the energy of the unidirectional
spectrum over the specified range of angles [—mn,
+n). The spreading funciton, H(f, 6), in conjunction
with an unidirectional spectrum redistributes wave
energy by a lower peak height.

The spreading parameter s and the mean peak
direction 6, which depends on the frequency are
obtained from published data (Niedzwecki and
Whatley, 1991)

s(H=00547 {32 @)
0,(H=143.1 03 (®)

2.3.2 Forristall (modified cosine) Model

The modified-cosine model, H, (f, 0), of the sprea-
ding functions with parameters obtained by field
measurements for modified Longuet-Higgins type
of cosine-power spreading function

Is®-+ 1]

1
2/fT [S(i)+—2—

Hi(f 6)= cos®—[6—-0,H] (9

and the gamma function is defined by the integ-
ral

Tz)= j jf*‘ e dt. (10)

2.3.3 Wrapped-around Gaussian Model

The wrapped-around Gaussian model, Hyf, 6). of
the spreading function has an exponential form ba-
sed on a normal distribution. It is written as

—_ : 1 ~172
Hz(f,e)f2 P ]_IZk prm—
a0
0—0,()— 2nk
) an

where o is the spreading standard deviation and
k represents the number of terms in the series ex-
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pansion. Moreover,
_ 1 @
erf(x)—E me dt (12)

which is the standard error function. The error fun-
ction is a special case of the incomplete gamma
funciton and may be obtained with moderate effi-
ciency. The definition of the error function is

2 x
el(x):—f e 7 dt (13)
an Jo

and the standard error function can be expressed
in terms of the error function:

M_I_J"‘ 22
erf(x)= \/51 e dt

IR

For the wrapped-around Gaussian model, there
are only two parameters which must be specified.
The parameter, k, represents the number of terms
in the series used to model and the wave spread,
and the parameter, o, is similar to the spreading
parameter s in the modified-cosine model. The term
o(f) is defined by (Niedzwecki and Whatley, 1991)

o(f)=4.95{—0.042. (15)

Niedzwecki and Whatley (1991) suggest five terms,
k=35, as being generally adequate for computation.

2.3.4 Circular-normal Model

The circular-normal model Hy(f.0) of the sprea-
ding function is of the form

Hi(f, 0)=N(f) {3‘2(—3]”2 o~ @201 (16)
m
where
a()=0037 2107 (7

and the normalizing factor is

[ on ]1/:
Nip=—0 a®)
f,, e (1200 0,1 4g

The form of the normalizing factor can be expre-
ssed in terms of an error funciton as
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n - an
J’ 67(1/2)[6*391/)‘2 do=—=
n

NG]

([ oo )
2 2

Therefore,

N(=- = 0)

[ o EED ]

Niedzwecki and Whatley (1991) state that the no-
rmalization factor given by eq. (18) is very close
to unity for all values of a(f). However, by computa-
tion with eq. (20), one sees that the normalization
factor is much greater than unity. Since the spectral
density is amplified by the normalization factor, the
circular-normal model was not considered further
in the present work.

2.4 Estimation of Directional Spectra

The angular distribution is very narrow for the
frequency components near the spectral peak fre-
quency, whereas it widens rapidly toward higher
and lower frequencies. In addition, the mean direc-
tion of the dominant spectral component is almost
the same as that of the wind. Therefore, in a gene-
rating area, it may be said that frequency compone-
nts near the dominant peak of the frequency spect-
rum, that is, the frequency components containing
the greatest amounts of energy, propagate in nearly
the same direction as the wind direction and that
their angular spread is very narrow. However, angu-
lar spreading increases toward higher and lower fre-
quencies as the spectral energy is decreased. Fig.
1 shows the results of including both the s(f) and
0,(f). The consine squared spread for short period
waves, and the cosine-eighth spread for swells are
illustrated in Fig. 3 through 2.10.

A comparison of the contours for a directional
sea spectrum using the wrapped-around Gaussian
model, where 6=.6 and variable o(f), is presented
in Fig. 7. The parameter, o, which depends on the
frequency generates more rounded and peaked spe-
ctrum. The value 6=.6 apears to be a good esti-
mate.

The various parameters of the spreading functions
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have significant effects on the energy distribution
between frequency and angular spreading. Since the
spreading functions for directions, the responses of
the presented directional sea models are expected
to be close to one another.

2.5 Irregular Wave Kinematics and Spectral Density
by FFT
2.5.1 Monte Carlo Simulation of Irregular Waves
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Fig. 7. Comparison of contours for five-term wrapped-
around Gaussian spreading based on the Bretsch-
neider spectrum for 6=0.6.

Over both space and time, the various linear pro-
perties of the irregular wave train are assumed to
follow the law of multivariate normal probability.
Within this framework, conditional probability laws
are themselves multivariate normal, thus an elabo-
rate theory can be constructed.

The wave properties that were not measured are
stochastic processes which to some degree may be
correlated with measured data. Dependent upon the
extent and the quantity of the actual data, nonmea-
sured wave properties may be either constrained to
strong agreement with the measurements or only
weakly related.

2.5.2 Wave Kinematics

An accurate assessment of water particle kinema-
tics below the surface of the waves is necessary to
determine hydrodynamic forces on the cable sys-
tems. The simulation for sea surface having a drec-
tional spectral density, S(f,0) is given as

M N
nxyn= Z Z A pn cOs(K,.X cosB,+y sinb,)
m=1 n-1
—2nft+ Opn) @210
where

Ama=v/28(,. 6,) AB, Af,

(xy.z) rectangular coordinate system. The origin
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Fig. 8. Random wave profiles.

is at the still water level and x (—x;) is
positive northward, y (—x,) positive west-
ward and z(—x,) positive upward.

£ wave frequency in cycles per second
k.,  wavenumber associated with frequency
0, direction the wavelet is travelling as mea-

sured clockwise from the x axis

Om» @ random phase for the (m.n) wavelet as-
sumed to be uniformly distributed over the
angles (0,2n) and independent from wave-
let to wavelet

A amplitude of the (m.n) wavelet

S(£,0) directional spectral density at frequency
and direction

Af,  frequency interval about frequency f,
A8, angle interval about travel direction 0,

Fig. 8 displays for different combination of unidi-
rectional spectral models and spreading functions
the Monte Carlo simulations of surface elevation
due to irregular waves. The wave kinematics can
be obtained from linear wave theory so that

uxyzh= > Y iy

m=1 n=1

cosh k,(d+z)

)= kd

056, (22)

M N
atyz0= 2. 2 nixyy

cosh k,(d+z) .

2
(2nfm) sinh k.d ing, (23)

where u(xy,zt) is the water particle velocity at space
location (xy,z) and at time t, and a(xy,zt) the water
patticle acceleration. The number of included fre-
quencies was selected M=350, and the number of
angles as, N=37 for use in calculations in this
work.

The fast Fourier transform is achieved by discre-
tizing time and frequency,

t=nAt, n=0, 1, 2,---, N-1,
fn=mAf, m=0, 1, 2--, N2 (24)

where the time and frequency increments are taken
to satisfy

(AtAD=1/N (25)

The time series formula simulated by the Monte
Carlo method, as represented in the frequency do-
main by FFT, becomes
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N-l
B(mAfxy,z)= Z b(nAt;xy,z) exp(i2nmn/N) (26)
M=0

The unidirectional spectrum can be obtained by
squeezing the spectral density at each frequency of
the directional spectrum. Comparisons between the
theoretical spectrum with the spectrum obtained by
FFT from generated waves in the frequency domain
are shown in Figs. 2.13 and 2.14 for two combina-
tion of spreading functions and spectrum models.
Good agreement is seen in both cases.
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Fig. 11. Single-point mooring and rectangular coordinate
system.

3. CABLE RESPONSES TO VARIOUS
MODELS

3.1 Description of the Problem

The cable responses for a single-point mooring
system of a buoy are used to demonstrate the deter-
ministic dynamic analysis procedure for a hydrody-
namically loaded cable-body system. The examples
have reference to a single, linearly elastic cable atta-
ched to a small body under the water, with the
cable initially stretched from the bottom of the
ocean, as shown in Fig. 11. The buoy was conside-
red to be statically displaced to a specified equilib-
rium position and then to respond to directional
random waves. The dynamic responses of the moo-
ring system were calculated. Horizintal cable motion
is the single most significant behavior parameter
for the case of a cable exposed to a random beam
sea environment. Small high frequency fluctuations
in vertical cable amplitudes are noted, but in most
cases may be disregarded since they are not ger-
mane to the problem under consideration. The high
frequency vertical motion is due to the elastic waves
propagating along the cable. The lower frequency
lateral motions are forced by the waves. The general
case developed for this study is described as follows:
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1) Cable Data:
Unstretched length=5%4 ft,
Weight in Water=00 lb/ft,
Diameter=0.057 ft,
Tangential drag coefficient=0.02,
Normal drag coefficient=1.2,
Added mass coefficient=1.0,
2) Buoy Data:
Diameter=2.5 ft,
Weight in air=438.37 Ibs,
Weight in fluid= —4214.96 Ibs,
Drag coefficient=.5, and
Added mass coefficient=.5,
Wave/fluid data:
Fluid depth=620 fi,
Fluid density=2.0 slugs/ft3,
Spectrum=Bretschneider or Jonswap,
Spreading model =Modified-cosine or Wrap-
ped-around,
Angle step of spreading functions=10°,
Significant wave height=24 ft,

3

~—~

Dominant wave period=12 secs,

4) Numerical integration data:
Initial configuration by static analysis
Cable segments=41,
Non-dimensional error tolerance =0.05,
Time length=30 or 300 secs,
Time step=025 or 030 sec

The validation of the proposed sea models for
the three-dimensional and nonlinear dynamic anal-
yses of a singly-connected cable-body system is de-
monstrated by consideration of a series of example
problems. Steady environmental loadings from wi-
nds are calculated by the methods previously consi-
dered in section 2 and wave forces are generated
using either Bretschneider or Jonswap wave spect-
rum equations, combined with either modified-co-
sine or wrapped-around Gaussian spreading func-
tions. Numerical results are obtained for this appli-
cation through the medium of a computer program
developed for this study and based upon the models
in section 2. Fig. 12 plots the two vertical system
profiles during two cycles of wave forces, based
upon the combined Bretschneider spectrum model
and modified-cosine model. Numbered labels on
each proﬁlés denote time in secs. Vertical and hori-
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Fig. 12. Lateral profiles of single-point mooring system
(1.5 to 10.5 seconds).

zontal movements are indicated during the cycles
at the end points of all 41 cable segments. Note
how the profile changes shape.

3.2 Example Resuits for Bretschneider Spectrum/
Modified-Cosine Model

Time histories for the vertical and horizontal ca-
ble displacements and velocities are shown, respec-
tively, in Fig. 13 and 14. Vertical reflected vibration
because of elastic wave travelling along the cable.
Note the small amplitudes of motions. The response
frequency of cable for wave frequency was nearly
identical. Compared to the magnitudes of the verti-
cal displacements, the magnitudes of horizontal dis-
placements are large. In Fig. 14, the horizontal velo-
city of the magnitudes of horizontal displacements
are large. In Fig 14, the horizontal velocity of the
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Fig. 13. Time histories for cable motions at tether point
for example.

water particles caused the mooring cables to curve
such that the buoy was forced to move downward.
At the buoy, buoyancy tended to stretch the moo-
ring cable, imparting an upward motion to the buoy
when the horizontal velocity of the water particles
changed directions. Thus, there exists a dominant
period in the vertical motion at the wave period,
as can be shown in Fig. 13.

Fig. 15 shows the trajectories of the cable at the
tether point in two planes, indicating a response
frequency similar to that for waves; that is, a direc-
tionality corresponding to both wave direction and
vertical vibration. Fig. 16 shows the vertical and ho-
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Fig. 14. Time historices for cable velocities at tether point
for example.

rizontal responses of the cable in the phase planes
(ie., directionality). What is not indicated in these
figure views is that the system approached steady-
state following the application of a certain number
cycles of wave forces. Tension responses at the an-
chor and at the tether for horizontal components
are presented in Fig. 17.

Since the initial horizontal vibration occurred
principally near the surface of the water, a phase
delay can be seen in the tension response at the
anchor; thus, tension responses at the anchor and
at the tether point reflect different phases. The verti-
cal tension range was from 2700 to 4900 lbs; the
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Fig. 15. Cable trajectories at the tether point for example.

range of the magnitude of the horizontal tension
was 200 Ibs; and the magnitude of horizontal disp-
lacement and vertical tension was much larger, res-
pectively, than the magnitude of vertical displace-
ment and horizontal tension.

4. EVALUATION OF RESULTS

The purpose of this investigation was to consider
the effect of mooring line dynamics for the response
analysis of submerged cable systems affected by ra-
ndom directional wave actions. The results of the
investigation indicated that to accurately predict ca-
ble system performance and to realistically evaluate
cable responses for the type of system considered,
the effect of cable dynamics must be considered
for a comprehensive dynamic system analysis. For
the model considered, the inherently dynamic na-
ture of the problem, including large displacements
and position-dependent nonlinear hydrodynamic
forces, was accommodated. Thus. by means of this
approach to determination of the effects of cable
dynamics, a basis has been provided for the feasible
solution of cable dynamics problems as well as the
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Fig. 16. Phase plane responses of the cable at the tether
point for example.

improvement of cable system design methodologies.

By means of the example problems considered
in section 3, the responses presented demonstrated
predictions for the dynamic behaviors of cable seg-
ments that show directionality. However, during tes-
ting of the computer simulation program based
upon analysis of the proposed model, certain prob-
lems were encountered. The selection of a time-step
is the most sensitive factor in this type of numerical
analysis.

As reviewed in section 1. the consideration of di-
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Fig. 17. Tension time histories at the tether point and
at the anchor point for example.

rectional seaways for the design of offshore has
been indicated. There has been little verification of
the directional charateristics of the hindcast spectra
using numerical models. In any event, the directio-
nal random waves produced by spreading functions,
which are the frequency dependence of various mo-
del parameters and coupling between frequencies
and angular spreads. have a significant effect on
the cable response. Therefore, the directional ran-

dom waves should be considered in the design of
mooring system.
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