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Abstract [ In this paper, the effects of free surface fluctuation on the dynamic response of offshore
structure is studied. In order to make the mathematical treatment of problem more tractable, only
a single degree of freedom system subjected to long crested, stationary, Gaussian, non-breaking ran-
dom waves of arbitrary bandwidth is considered. Wave force is computed based on the Morison
equation in which wave induced fluid particle velocity and acceleration are modified to account
for the effect of intermittent submergence of structural members near the free surface. It is shown
that the response spectrum is reduced and higher harmonic response component appears when the
intermittent submergence of structural member is considered. Furthermore, it is also found that the
amount of reduction in the response spectrum is getting smaller as frequency is increased which
might be attributed to the higher harmonic component caused by intermittent submergence and
these effects are getting profound as water depth is decreased.
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1. INTRODUCTION

In studying the dynamic response of slender off-
shore structures to wave actions, it is often assumed
that wave forces by calculated on the basis of Mori-
son equation, in which the force at any section of
a member is expressed in terms of wave induced
fluid particle velocities and accelerations. Sections
of a vertical member near the water surface are
intermittently submerged, so that wave forces should
be modified from those acting on continuously sub-
merged sections. For the case of random waves, the
corresponding statistical properties of the water par-
ticle kinematics for intermittently submerged loca-

tions near the free surface were examined theoreti-
cally by Tung (1975a, b) and Pajouhi and Tung
(1975). The statistical properties of the correspon-
ding intermittent forces on such sections were inve-
stigated theoretically by Tung (1975a) and more re-
cently by Issacson and Baldwin (1990a). Subsequen-
tly, Isaacson and Baldwin (1990b) and Isaacson and
Subbiah (1990) compared these theoretical predic-
tions with experiments and with numerical simula-
tions, respectively. The effects of these intermittent
forces on the response of structures have received
less attention save for the work of Kanegonkar and
Haldar (1987) and Tung and Yang (1991) the scope
of which, however, is somewhat limited and only
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deterministic waves are considered. It is the purpose
of this study to rexamine this subject. For convenie-
nce, only a single degree of freedom system is con-
sidered. Furthermore, waves are assumed to be long
crested, stationary, Gaussian, non-breaking and of
arbitrary bandwidth.

2. PROBLEM STATEMENT

Denoting the displacement of the cylinder as y,
the differential equation of motion is

yso=—Mif+ [ Fisogors+ [ Fisngeds (1)

where

/= 3ET 03]
and
__SGL—s)
gs)= oET 3

are respectively static displacements of the mass due
to unit horizontal forces applied at s=L and s=s.
Furthermore, Fi(st) and Fy(s¢) are respectively the
distributed inertia and drag force intensities given
by (Sarpkaya and Isaacson, 1981)

Fi(s)=Ku(s0)—Mj(s1) O]
and

Fisn=Kusn—yE)llu@sn—yse)l (5)
where

_ nbD?
Km - Cmp 4 (6)
M=o )
4
and
D
K= Cdp'z‘ 3

In equation (6), (7) and (8), C,, C,=C,—1 and
C. are respectively the inertia, added mass and drag
coefficients, D is the diameter of the cylinder, u is

the horizontal particle velocity and overdot denotes
the differentiation with respect to time. Because of
quadratic drag forces, the response of the structure
is governed by nonlinear differential equation. In
a random wave field, this equation is stochastic and
the solution has been achieved by statistical equiva-
lent linearization method (Dao and Penzien, 1982).
Following Dao et al. (1982), the drag force, F, is

Fulsty=Kau(st) u(st) — 2K, EL lu(s 1) (1) ©)

where E[-] is used to denote the expected value
of the quantity enclosed in the brackets. If the wa-
ves are such that they remain mostly within the
limits of the boundary of the member, then equa-
tion (4) and (9) gave a good approximation. If, ho-
wever, the wave amplitude is larger compared with
the cross-sectional dimension of the cylinder, then
the events of complete submergence or emergence
of the cyliner are associated with finite values of
probability. Taking the possibility of intermittent su-
bmergence of the cylinder into consideration. the
equation (4) and (9) are modified to

Fi(st)=Knu(sDHn+L—s]—M,y(s.0) (10)
Fis=Kastlu(s) HIn+L—s]
— 2K, ELlu(s. )l Hn+L—s1p(s.0) (11

where H[ -] is the Heaviside unit step function and
n is water surface displacement. Equation (10) and
(11) simply state that, for any point fixed in space,
as long as it is immersed in water, u(s,t)=u(st) and
u(st)=u(sr); otherwise, they are set equal to zero.
For further simlification of equation (1), we assume
the deflected shape of the cylinder to be

Y=Y () (12)

where Y(¢) is the generalized coordinate and f(s)
is a shape function which is given by

¢(S):% (13)

Upon substituting equation (10) and (11) into (1),
the equation of motion becomes

MY+CY+KY=F (14)

where
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M=M+M, (15)
is total mass,

11
MW—ZOML (16)

is added mass,
C:2K7d [ Etlus I +L=sTho0 g ds (1)

is hydrodynamic damping coefficient, K=1/f is st-
ructural stiffness and

F= —I% ﬂ) u(sHYHIn+L—s]g(s) ds

+ % ﬁ;u(s,t)l u(sHHIn+L—s]g(s) ds. (18)
Even though the integral in equation (17) and
(18) may be evaluated straight forwardly, in a inte-
rest to identify the key parameters of wave-structure
interaction, the random variables involved are non-
dimensionalized. Following Lipset (1986a), the qua-
ntities ¥, 0,5 ¢ u and # are nondimensionalized
to represent ¥/D, n/c,, /L, @4, u/c, and u/c;, respe-
ctively, where w,=(1/Mf)"* is the natural frequency
of vibration of the structure in water and o is used
to denote the standard deviation of the quantity
in the subscript. In terms of nondimensional varia-
bles, the equation of motion is now written as

Y+CV+Y=F (19)
where

C=c [ o.ELlulst) Hin—al)3s' ~s) ds (20)
and

F=c; f ;o;,z}(s,t)H[n —alJ(3s*—s%) ds+

e J :)oi(s,t)lu(s,t)lH[n —al(3*—s")ds Qn
In equation (20) and (21),
a=—H1Z (22)
Cn
— Kd
= Fo, 23

KnL

YT 4
and
_ Kd
4= Dl @)
Rewriting equation (19) gives
Y0)= f * he—OF@)dT (26)

where Ah(-) is the impulse response function of
equation (19) and <t is time lag. The auto-correlation
function ryy(t) is the expected value of the product
of Y(r) and Y(t+1). That is,

(0 =ELY@)Y(e+1)]

= J':O jfwh(’ —h(t+ T WELFT)F(T) ldudy,
27

Denoting 0,, 6, as t—t; and t+t—1,. respectively,
the equation (20) is reduced to

=" [ nOIOI(c+0,—0x00; (2

The spectrum of Y is given by the Fourier trans-
form of the covariance function Cy{t)=ry(t)—E?
[Y]. That is,

Sy ®) = H*)H(0)SHo) 29

where o is frequency, S{®w) denotes the spectrum
(auto or cross spectrum) of the quantities indicated
in the subscript, the symbol* denotes the complex
conjugation operation,

1

H(w)=——————
©=1" o Fice

(30)
is unit frequency response function and i=y/—1
is the imaginary unit.

3. AUTO-CORREILATION FUNCTION
AND SPECTRUM

There are basically two ways in determining ry{t)
(Tung and Laurence, 1992). The first method is due
to Borgman (1965) in connection with the study
of auto-correlation function and spectrum of wave
force on vertical members. Subsequently, the same
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Fig. 1. Definition sketch.

method was used to study the effect of free surface
fluctuation on auto-correlation function and spect-
rum of a random wave field (Pajouhi and Tung,
1975a, Tung and Pajouhi, 1976, Tung, 1975) and
of wave force on vertical cylinders (Pajouhi and
Tung, 1975b). Based on the definition of expecta-
tion, the method takes the joint probability density
function of the random variables involved and car-
ries out the necessary integrations. If the method
is applied to the present study, the auto-correlation
function of F would be a nonlinear function of
the correlaton coefficient function r(v)=E=u(t(u(t
+ 1)1, ran(®=E[EME+1)], ru(®)=ELu@n@+7)] and
ru(D)=ELu(u(+7)] (hereafter referred to collecti-
vely as 7). The spectrum of Y must be performed
numerically. Following Borgman (1985), we may e¢x-
pand the nonlinear function of correlation functions
r into Taylor’s series and retain only the constant
and linear terms based on the facts that the correla-
tion coefficient is less than unity. In this way, the
Fourier transform of Cyy{t) may be carried out in
closed form. A parallel way of determining the auto-
correlation function ryf(t) is to express the joint
probability density function of two Gaussian ran-
dom variables as series in terms of the Hermite
polynomials (Erdely et al., 1953)

ha(2)= %exp(%) Z; [exp( - %)] (€3]
This is,

| - 2(11—F)J‘x2+y2_2’“y)]

(1 _’2)1/2 €

- 1
=2 h,,(x)hn(y)w(axp[—3(x3+y2)]. 32)

When the expected value under consideration invo-
lves more than two random variables, it is conve-
nient to resort to the use of conditional expectation
in conjunction with the Hermite polynomial series
to perform the task. In line with linear approxima-
tion suggested by Borgman (1965) mentioned above,
the higher order terms in the Hermite polynomial
representation may be truncated. It is the approach
that we shall follow in this study. To demonstrate
the various techniques involved in the estimation
of the expected value, the estimating procedure of
the expected value appeared in equation (27) will
be shown in detail.

1
o o] SLEClus) HIn+ aJ)35 — 5 ds
Using the fact that ¥ and n is jointly Gaussian
due to stationerity assumption,
ECusolHOn+a11= [ [ iusolfutunydudn - (33

where fi.(*,*) is the probability density function
of the jointly Gaussian random variables ¥ and n.
By expanding the joint probability density function
into series as shown in equation (32) and taking
only the zeroth and first two terms, we have

ELlutso I +all=— [*[* tutsn)
1+ unra(0))e 24" dudhn, (34)

The integration in equation (34) may be easily car-
ried out to give

Ellust)|Hln+all= @Q(a) (35)
where

O@)= f Z@)dz (36)
and

— 1 1 2

Z(z)= \/Q?exp< 22) 37)
is the probability density function of the zero-mean
Gaussian random variable of unit standard devia-
tion. Hereafter, for brevity, let the subscripts 1 and
2, respectively, refer to quantities evaluated at the
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time #,=¢ and t-=t+<.
2 1 2 . e N N
) Cif J O ELitiioH Hy (35, —s))(35;—53) dsids:

Exploiting the statistical independence of # and n
because of the stationerity assumption, we can rew-
rite the expected value as

Elww-HH>]=ELiwu, JELH H,)

=nit 5[

(L MMoron(@) € 20 2
=ra(©L0a)+ris(®)] (38)

11
. cﬁf J OﬁiE[ul|u1lun|u2|H|H2](3s‘;—sf)(3s§—S;)d§1d52

Since the expected value involves four random va-
riables ). u», M1 and 7, it would be desirable to
make use of conditional expectation (Papoulis, 19
65). Thus,

ELu L\ unlua| H Ho )= ECHHLECu Lo Lz sl Imina ]
(39

where E[A|B] is the conditional expectation of
event A given the occurrence of event B. In equa-
tion (39), Euiluyluzlual Iny, 1] is the conditional co-
rrelation function of uilus] and wslus] and is equal
to the sum of the conditional covariance function
Ci; and the product uju, of the conditional mean
values, w, of wluyl and . of wlusl. The linear
mean square estimation technique requires that p'
and | be a linear function of n; and m, That is,

l-11:£11111+b|n2 (40)
w=am; +bm; 41

where the coefficients a, b, a; and b, are selected
in such a way to make wslu/l—p and wlusl —
orthogonl to n; and m:

E(Gu ] —wmi]=0, E[Q@ulu —pn1=0,  (42)
E[(M2|U2| - le)T]l] =0, E[(Hzmz| - Hz)’ﬂz]:(), 43)

from which we get, to the order of 7,

44

4
a,= \/ﬂ r.(0)

4 4

b= \/g FrlT)— \/E Tl O)n(T) (45)
and

azzbl, bzzal- (46)

The conditional covariance function Cy, of u|uil
and wslus| is

Cro=EL@lu| —am —bm)uslual —ami—bmy)1(47)

and by the virtue of the orthogonality properties
and exploiting the facts that # and n is jointly Gau-
ssian

Co=E[u|u)l _(lm]—b]T‘lz)uzlqu
8 4a 4b
== ru(0— ﬁrm(r)— ﬁrww). (48)
From equation (39),

El:u] [ |uzlu2|H|H2]=C12E[H1H2]+E[H1H2H1H2:|
49)

Substituing w;, M and Cj; into equation (49) and
performing the expectation operation,

8 8
ELuy|ui|lusuol HiF] = —n—ZZ(a)ri,,(O) + ;Qz(a)r.m(r)
16
+ ;aZ (@)@ (O)mu()
8
igazzz(a)fm(o)rnn(r). (50)
After all the expected values in equation (27) being

derived, the tre(t) takes the form, to the order of
r,

()= G0+ Gl )+ Gorl©) + Giran(©)+ G5 (51)

where
1
G = czjocs,;Q(a)Gs2 —s3)ds (52)
Gg=\/§c3 f ;criQ(a)(Btsz—s})ds (53)

GF@J :Fﬁ\/aZ(a)Q(a) Vid0)3s'—s)ds - (54)

Go= \/%:3 f ("of,aZ(a)rnu(O)(:;sz —s%) ds (55)
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052\/%3 f ;o§Z(a)rw(0)(3s2—s3) ds. (56)

It may be verified that G} is nothing but the square
of the mean value of F. With the auto correlation
function of F determined, the spectrum of force F
is, to the order of r,

SiH©)=G1Su(®) + G3Su(®) + G3S,{0)+ G2Sm(®).
(57

If we represent the stationary random process n(r)
and u(t) by its Fourier-Stieltjes integral

ny=—— f SdA@) e (58)
On

coshkLs

“sinhkL © SinbkL 9)

u(ty=

where dd(w) is the complex, random, zero-mean
Gaussian Fourier-Stieltjes coefficient, then, it is
known (Phillips, 1980) that

EldA(w) d4*(w")] if w#w

1 . ,
= =y Sm(@) if 0=0'. (60)

n

Based on equations (58), (59) and (60), it is easy
to see that

1 )
= [ Sy o )
n
_ 1 j " cosh’Ls
rau(T)= 05 o)S,m((o)——-———sinhsz &dw (62)
coshkLs .
A= p(t)=—— — 63
Pl =)= oS- e (@)
and
e . cosh’kLs
FulT) 2 (A () sinhZkL ¢ dw (4
so that
_ 1 cosh’kLs
Sul@)= 3 0 T Swl®) (65)
1 cosh kLs
Snlw)= Sin(w) (66)

O
6.0, sinhkL

and

1, cosh’kLs
wl W)= "3 —S
Su©) I @ sinh?kL m(®) ®7

4. NUMERICAL RESULTS

To quantify the above results, we must specify
the wave spectrum from which the quantities oy
6, 65 and r(0) can be calculated. In this study,
we elect to use the Wallops spectrum (Huang e
al., 1981) which takes the form

Son(@)= w,,,afs m eXp[ - %(% >4] (68)
where
_ | log(2r’®)
== | (©)

is the absolute value of the slope of the spectrum
(on the log-log scale) in the high frequency range
and

¢=o,/Lo (70)

is the significant wave slope, L, being the wave le-
ngth whose frequency wo corresponds to that of
peak of the single peak Wallops spectrum. In equa-
tion (68), the coefficient a is given by

(2n§)2m(m —1y4 1

o= 4m 574 r[(m — 1)/4] (71)

where T[-] is the gamma function (Abramowitz
and Stegun, 1968). Closer examination of the above
shows that the Wallops spectrum is specified by
the two parameters £ and wyp; the former is a mea-
sure of the severity of the sea and rarely exceeds
the value of 002 in the field although can reach
as high as 0.04 in wind-wave tank experiments in
the laboratory. From equation (6R), it may be veri-
fied that

2ng (72)

2
0

_ 2nég V4 T((m—3)/4) 112 cosh kLs
T <4) {I"((m—l)/4)} sobk,. %)

oy =E"[n(m@®)]1=

6,=2 (%)12{ I((m —5)/4) }”2 cosh kLs

T((m—1)/4) sinhkL 74
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Fig. 3. Hydrodynamic damping coefficient for varying &
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Fu(0)= (75
The parameters involved in determining ELF] E[F*],
SrH{®) and Syfw) are the force coefficients C,. C,
and C, the sea state parameters & and wo water
depth L, and the diameter of cylinder D. Following
Lipset (1986a), we select C,,=1.25, C;=145 and pD?
/M=0.785. For the sea state, we use £=0.015, 0.02,
0.025 and 0.03 and w,=06 rad/sec. We allow D to
take values of 1.0m and 50m. In Fig. 2, the Wallops
wave spectrum is plotted for £=0.015, 002, 0.025
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3 3.0 1
Q
e Tl
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S e T
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Fig. 4. Expected value of wave force for varying & and
depth.
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Fig. 5. Response spectrum (ss is &).

and 0.03. Nondimensionalized hydrodynamic dam-
ping coefficient, C, and the expected value of F,
E[F], plotted in Fig 3 and Fig. 4, respectively, for
varying & and depth which are expected to be a
major factors affecting the effects of free surface
fluctuation on the dynamic response of the struc-
ture. It is shown that as the nonlinearity of random
wave field is getting increased, the wave energy is
spreading toward the relatively low and high fre-
quency range. It is also shown that the damping
coefficient and E[F) are getting larger with increa-
sed & whereas this trend is reversed when the water
depth is increased. With respect to the response
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spectrum, Fig. 5 shows the spectra for £=0.015 and
L=7m and Fig. 6 for £=0.015 and L=10m where
the wave and force spectra are also included for
the comparison. Note that in this case the response
spectrum is broadened due to resonance like condi-
tion with an associated large response occurring
around w/w,=1.0 whereas the force and wave hei-
ght spectra have a peak around /w,=06. Fig. 7
and Fig. 8 show the wave force spectra for £=0.015,
002, 0025 and 0.03 at L=7m and, at L=10m respe-
ctively. It is shown that with increased &, the force
spectra are getting larger. It is also shown that when
the depth is getting larger, for a case in which &
is less than 0.03, the force spectra are increased
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Fig. 8. Wave force spectrum (ss is &).
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Fig. 9. Wave force spectrum (ss is &).

whereas in a case where ¢ is larger than 003, the
force spectra is getting decreased. For the compari-
son, the wave force spectra considering the effect
of the intermittent submergence are also plotted
with a continuously submerged counterpart in Fig.
9 for L=7m and in Fig. 10 for L=10m respectively.
Response spectra for varying £ and depth are plot-
ted in Fig. 11 and Fig. 12, Fig 13 and 14 show
the response spectra with a continuously submerged
counterpart. It is shown that the response spectra
are reduced when the intermittent submergence is
considered and the amount of reduction in the res-
ponse spectrum is getting smaller as frequency is
increased. which might be attributed to the higher
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harmonic response component caused by the inter-
mittent submergence.

5. CLOSURE

In this study, we have demonstrated the manner
in which the response spectrum of offshore structure
may be obtained. Knowledge of wave force spect-
rum which is prerequisite for the determination of
the dynamic response of flexible offshore structure
susceptible to dynamic action is also derived consi-
dering the effect of intermittent submergence of off-
shore structure. Although it has been shown that
free surface fluctuation has profound effects on
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wave field kinematics, dynamics and wave forces
especially in the vicinity of still water level, it has
not been clear how free surface fluctuation affects
structural response. This study shows that the res-
ponse spectrum is reduced as expected and higher
harmonic response component is appeared when
the intermittent submergence of structural member
is considered.
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