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Abstract

The vortex shedding from a circular cylinder placed in a steady uniform stream is
simulated by the vortex cloud model of the discrete vortex method. The vorticity created
at the cylinder surface is discretely represented by a number of nascent vortices at each
time step and the motion of these cumulative vortices is monitored to produce the evolution
of the vortex distribution pattern. Convection of vortices was traced by the vortex-in-cell
technique and the force coefficients were calculated by both Sarpkaya's formulae and Lee's
formulae for comparison. Discussions concerning the interrelation between the
computational parameters and some principles for choosing the suitable values are included.
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1. Introduction

The flow around a circular cylinder can be
analysed by a number of different methods of at-
tacking the equation of motion, As one of these,
the discrete vortex method(referred to the DVM
in the following) has in recent years attracted
much attention by producing some impressive
results for shed vortex distribution patterns
which are claimed to assume high Reynolds num-
ber flows. When vorticity is the major matter of
interest, this method is a preferable choice to
other ways of dealing with the flow fields since it
makes use of and appreciates the intrinsic proper-
ties of vortex dynamics in tracing the flow evol-
ution. It may be noteworthy that the method is
particularly suitable for two-dimensional problems
owing to the characteristic nature of vortex lines,
Also the fact that the results produced by the
DVM are not blown up directly with increasing
Reynolds number has some significance in nu-
merical treatments of flow fields.

The first attempt to represent the shear layers
emanating from a blunt body by discrete vortices
was made by Gerrard[1]. His sheet vortex model
of vortex shedding was further exploited and re-
fined by Clements{2], Sarpkaya(3]and others, and
Fink and Soh[4] developed the effective tech-
nique of rediscretising the sheet vortex to post-
pone onset of the numerical instability as late as
possible. However it was not so long before the
shortcomings of this model for representing what
is happening in the boundary layer and the wake
are felt acutely. The vortex cloud model[5] ap-
peared to meet what is wanted. A number of vor-
tices are put around the cylinder on a certain
principle at every sequential time step and the
evolution of the pattern composed by their sub-
sequent instantaneous positions is traced in this
model. No specific strategy is necessary to find
the separation points as they are determined in
the course of shedding of these vortices. The dif-
fusion of vorticity by the viscous effect can be
taken to some degree into consideration by
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incorporating the so-called random walk method
to the calculation, which will no doubt bring some
difference in the flow field for flow of different
Reynolds number.

However it is too early to say that the
Reynolds number dependency of a flow can be ad-
equately accounted for by this model because the
random walk technique is only an ad-hoc impro-
visation to simulate the diffusion process rather
than a built-in structure of the method. There are
still quite a few methodical snags to be resolved
before this fundamental, yet difficult to meet, re-
quirement can ever be thought seriously. Dif-
fusion of wvorticity is therefore excluded in the
present study resulting in a flow model of the
inviscid fluid with strength-preserving imbedded
vortices, Removal of the arbitrary computational
parameters is one of the related tasks to which
attention of the present paper is directed. These
parameters do not play independent roles but
have some interrelationship between them which
will be one of the important topics of discussion.
Even if the interrelationship is fully disclosed and
the arbitrariness is reduced to the minimum,
there should remain truly arbitrary factors in this
model. The remedy for stimulating asymmetry of
flow is one of those, about which a brief, though
important, guideline is mentioned. When the fun-
damental unavoidable factors of arbitrary magni-
tude and the strategy to stimulate the asym-
metry are fixed, the set of computational
parameters, to be found only through numerical
experiments, that will bring forth the best pat-
tern of vortex distribution is a matter of keen
interest since it has general meanings due to the
use of nondimensional variables. A set which
seems to work well is presented.

The force exerted to the cylinder by fluid is of
course the most important end product of the
computational scheme., It has wusually been
calculated with the Sarpkaya’s formulae[6].Lee[7]
suggested the modified formulae which contain
terms concerned with the growth rate of the
strength of the nascent vortices. The force is
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calculated by the both sets of formulae for com-
parison,

2. Representation of the flow field

A circular cylinder of radius a is placed within a
uniform flow of magnitude U directed toward the
positive x-direction. The origin of the coordinate
system is chosen at the center of the cylinder.
All the variables except those mentioned other-
wise are supposed to be nondimensionalized with
respect to U and a. The plane outside the cylin-
der is covered by grid composed of m
equally-spaced radial lines and » concentric circu-
lar arcs specified by the following equations ;
angle between the radial lines :

radius of the k-th circular arc ;

rk=T1(1+A0)k_l, k=1,2,"',n (22)

with rn=14¢ (2.3)

A cell generated by this pair of equations is
fan-shaped with the equal radial and inner cir-
cumferential lengths. The parameter m deter-
mines the degree of resolution of the flow field.

radius = a
Fig. 1 The flow field

A positive number € to be much smaller than é
the distance between a nascent vortex and the
cylinder surface is needed to prevent the inner-
most nodes from coinciding with the cylinder sur-

o] %-7]

face, Without this, when the shed vortex’
strengths are allotted to the nodes, the nodal vor-
tex strengths on the innermost nodes are nullified
as they coincide with their images, creating a
large error for the motion of the vortices lying
within the first layer of the grid. The value used
for it in the present study is 0.01.

2.1 The boundary condition

The condition of zero normal component of vel-
ocity is usually dealt with by the use of image
vortex concept in the DVM as is the case in the
present study. The image vortex system within
the circular cylinder for an external vortex is
simple due to the simplicity of the body geometry
and is composed of just one vortex of the same
strength but opposite sign at the inverse point,
This image vortex system is different from that
specified by the Milne-Thomson’s circle theorem
[8)in that no vortex is put at the cylinder center,
It is thought to be appropriate for modelling vor-
ticity creation at the cylinder surface with the
DVM approach because there should be no net
circulation on a closed circular contour of radius
large enough to enclose the cylinder and the ex-
ternal vortex, The complex potential of a vortex
located at any point external to the cylinder is
then

#(2) = =T [log(z - 2,) ~ log(z - %)| (2.0

where z; : the inverse point of

Zoy zi=1/ 2, (2.5)

z, ; position of the vortex

I' ; strength of the vortex.

The no slip condition is satisfied, in the most
DVM anaylysis of flow about a cylindrical body,
by determining the strengths of the nascent vor-
tices so that the condition is realized at every
control point on the cylinder surface. This prin-
ciple, in spite of its logical clearness and sim-
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plicity, has a serious drawback that the strengths
of vortices so determined are strongly dependent
on the distance between the chosen positions of
the nascent vortices and the cylinder surface and
no uncontroversial guideline for the choice of
suitable distance is devised so far. This consider-
ation suggested an indirect way of satisfying the
condition by determining strength of a nascent
vortex as the local tangential velocity at the cor-
responding control point on the cylinder surface
multiplied by the circumferential segment length.

2.2 The vortex-in-cell[ 9] technique

2.2.1 The nodal distribution of vortices

All the vortices shed in the flow field are
distributed to nodes of the grid at every time
step. The bivariate linear redistribution scheme is
usually employed for this purpose and the result
is ;

A; .
r,-=l‘—A-, i=1,...,4 (2.6)

where A . area of the cell
A; : the partitioned area element op-
posite to the i-th corner, see Fig. 2
This equation is applied in turn to every vortex

23

Fig. 2 Area division of a cell
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existing in the flow field at a particular time step
to produce the regular nodal distribution of vorti-
ces which replaces the original spontaneous one.
This regular nodal distribution is used only for
the calculation of velocities at the nodes.

A/'s in eq.(2.6) are calculated from

Ay = 3G )l + Do = 7)

1 - 1 1
Ay = §|3(Z Z4)l(;: + ) = i)
As = 28GRI+ 1) —r0)
3= §| (zz m i (2.7)

Av=5RGE I + 7)o =)

ri = |21 = |24]
o = |22] = lz3]

r= |z|

For a particular vortex, the cell which contains
it can be found by requiring to satisfy the follow-
ing two conditions,

1) radial direction :

ri < |z| <o, (2.8a)
2) circumferential direction ;
(7 21)%(z24) <0, (2.8b)

Z denoting the position of the vortex as that in
eqs.(2.7)

2.2.2 The velocity field

The velocity at any point within the flow field
is stipulated to be estimated by bilinear interp-
olation of the velocities at the four corners of the
cell within which the point is located. This means
that the velocity field is depicted by the
velocities at nodes. The velocity induced by a
vortex in the flow field and its image within the
cylinder is given, fromeq. (2.4), by

T[ 1 1
W(z) = —;7[ - ] (2.9)

z2—2, Z-—2z
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Using this expression, the following two kinds
of the influence coefficients are calculated
(1) the node to node influence coefficients

i 1
W ) o =G T k=0
nn szxznk)— :-z- 1 1
2m Lznj — 2ok Znj — (2nk)i
for k#7, (2.10)
(2) the node to control point influence

coefficients

Won(zpj; 2nk) = 5= -
pn(zpl’ an) 2T Zp; — Znk 2pj — (Z"k)i]

(2.11D)
(z,x); denoting the inverse point of the k-th

The second set of the
coefficients is needed to expedite calculation of

node . influence
the velocities at the control points on the cylin-
der surface, which are used to determine the
strengths of the nascent vortices.

The velocity occurring at the j-th node and the
Jj-th control point on the cylinder surface at a par-

ticular time step is then given, respectively, by

N
1 I
E(an) =1- Z_2— + E | " Wnn(znj;znk)

S
(2.12)
- A
W(zp5)=1— z—;,; + k2=:1 Tnk Won(2pj; 2nk)
(2.13)

where I, means the vortex strength at the
k-th node at the time step and N denotes number
of the total nodes. After the velocity at each
node of the grid is calculated from the nodal vor-
tex strength and the node to node influence
coefficients by the above equation, the velocity
at any point in the flow field is determined from
the following expression of bilinear interpolation :

I

o) 71

4
w = %;Aiwi (2.14)
=

where w; ; the velocity at the i-th node
A; ; see Fig. 2
A ; area of the cell,

2.3 The nascent vortices

2.3.1 The strength

As mentioned earlier, this strength is usually
determined so that the tangential velocity at the
control point on the cylinder surface vanishes
which results in the following simultaneous linear
equations ;

m

1 1 1
—_2-;1;%[21’1' I e'.o"‘/"k]

+W(2p;) = 0

Because of the oversensitive dependency of the
strength y on the distance between the cylinder
surface and the radial position of the nascent vor-
tex ok, this way of determining the strength is
discarded in the present study. Instead, the
strength is directly determined from the tangen-
tial velocity at the control point which is taken as
the point where the radial line to the nascent vor-
tex intersects the cylinder surface. Thus the
strength is determined from :

v = —S‘[Tu‘(zpj)zpj] Ad, i=L12,--.

, m

t2.15)

The vortex strength determined in this way is
not independent of the distance between the cyl-
inder surface and the position of the nascent vor-
tex but less sensitive to it than in the other way.
In addition, it has logical advantage that the
strength density determined by the flow field it-
self is used to calculate the vortex strength.
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2.3.2 The position

If the nascent vortices are put on the cylinder
surface where the sheet vortex is supposed to lo-
cate, the vortex shedding does not occur because
of zero normal velocity there. This demands the
initial starting point of a nascent vortex to be a
small distance off the cylinder surface. The radial
position of a nascent vortex is then expressed by

or =146 k=1,2,---,m (2.16a)

The suitable value for 6 is sought through the
numerical experiments.

As many nascent vortices as the radial lines of
the grid are to be introduced every time step,
each one being put at midpoint between the two
neighbouring radial lines. That is, the circumfer-
ential position of the k-th nascent vortex is speci-
fied by
ar = (k—0.5)Af k=1,2,---,m (2.16b)

2.4 Convection of the vortices

The nascent vortices determined in the above
section are merged sequentially to the vortices

shed already into the flow field as the following
equatins show ;

TM,+k =7 (2.17)
M, 4k = O etox k= 1,2,---,m (2.18)

The total number of the shed vortices should
also be adjusted as

(Mt)new =M +m (2.19)

After calculating the velocities at all nodes by
eq.(2.12), the velocity at the position of a par-
ticular vortex is evaluated from these results as
the eq.(2.14) shows. Search of the relevant cell
can be accomplished again by requiring to satisfy
the conditions shown in eq.(2.8). The convection
velocity being available, the new position of the
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vortex for the next time step can be readily
predicted by some time marching scheme, Simple

forward difference scheme is used in the present
study as follows ;

Zk,new = Zk,old + w(zk,old) At (2.20)

2.5 Stimulation of the asymmetry
Although a cylinder has perfect geometrical sym-
metry with respect to the flow direction and the
consequent symmetric influence coefficients, the
asymmetry of vortex shedding in the DVM analy-
sis of flow does eventually occur due to the
round-off error of calculation even without the
aid of any compulsory asymmetry-inducing
scheme. However, this process is too time-con-
suming and, more significantly, no realistic vor-
tex distribution pattern is produced in that way.
Hence, a positive means of stimulating asym-
metry had better be introduced at the early stage
of vortex shedding. Disturbance of vortex distri-
bution by adding extra displacements to the vor-
tices shed from one side of the cylinder is fre-
quently used as such a means and employed in
the present investigation. The suitable magnitude
of the displacement and duration of imposing the
disturbance still remain to be decided through nu-
merical experiments, What is basically required
to evolve a realistic stabilized vortex distribution
pattern is that these factors should be in good
harmony with the properties of the group of vor-
tices first shed from the other side of the cylin-
der.

Gradual introduction of disturbance over a
number of time steps is chosen in this study.
Specifically, all the vortices lying in the fourth
quadrant are shifted a certain distance in the di-
rection of the free stream for certain number of
the initial time steps as the following equation
shows ;

2k shifted = 2k + & (2.21)



68

£ denoting the displacement per time step.

2.6 The force calculation

The force components exerted to the cylinder
by the fluid due the vortex shedding are fre-
quently calculated through the following set of
formulae derived originally, but with some slight
differences, by Sarpkaya (6]

M,
Cp = —El‘k(vl, - v,-k) (2.22a)
k=1
M,
CL= Z Ti(ue — uir) (2.22b)
k=1

These formulae were derived from the ex-
tended Blasius theorem under the assumption
that no addifional vortices other than those
already shed into the flow field appear during the
small interval of time of the time derivation. The
time step of introduction of the nascent vortices
being arbitary, this assumption seems not logical
enough because a set of the nascent vortices
should be there however weak their strength
change in the time interval may be. From this
point of view, Lee[7] derived another set of
formulae which have additional terms coming into
existence through the nascent vortices grown
during the time interval, in the from of the
growth rate, as shown below :

d 1, .
Cp = —Zl‘k(vk—v,k) Z 2L l—a-)smak

(2.23a)

d 1
CL = Zl}(uk —u,k)+z ‘Yk 1— 0’_1,-) COS (Y

(2.23b)

The force coefficients are calculated with these
two sets of formulae to see the difference they
bring in.

°lE7)

2.7 The growth rate of the nascent vortices

As the strengths of the nascent vortices are
calculated from eq.(2.15), the growth rates are
expressed as the time derivative of this equation,

QL 8‘[d‘(z

o 2pj Aﬁ] (2.24)

The rate of change of the conjugate complex
velocity at the control point on the cylinder sur-
face in the above expression should be evaluated
from the rate of change of the vortex strength at
each node of the grid which is in turn dependent
on the rate of change of area element due to the
motion of each vortex in a celll. Although this
process is logically in conformity with the vortex-
in-cell method, it contains much more compli-
cated computational works compared with the
process of direct calculation from the motion of
vortices. If the velocity occurring at the control
points on the cylinder surface is to be calculated
directly from the vortices existing in the flow
fied, the relevant expression is, instead of eq, (2,
13),

_ 1
’U)(ij) =1- zg) - 2
M,
1
T (2.25)
; k[zm_zk ’"’( )-]

and therefore the time derivative of this vel-
ocity is expressed as

d"'(z i
dt = ZI‘ [(zpj - z)?

Wik
(2.26)
™ G = GO
where
wy . the complex velocity of the k-th vortex
w;, - the complex velocity of the image of the
k-th vortex
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2.8 Summary of the computational procedure
The computational procedure of the present in-
vestigation based on the DVM analysis is
summarized as follows ;
1) read in the computational parameters,
2) generate the grid system,
3) fix the position of the nascent vortices,
4) calculate the influence coefficients,
5) calculate the redistribution ratios for the
nascent vortices,
6) distribute the vortex strength, if any, to the
nodes, eq.(2.6),
7) calculate the velocity occurring at the control
points on the cylinder surface,
8) calculate strengths of the nascent vortices,
9) distribute these strengths to the nodes,
10) join these vortices to the sequence of the vor-
tices shed already,
11) calculate velocity induced at each node of the
grid,
12) calculate the convection velocity of each vor-
tex,
13) calculate the force coefficients Cr, Cp,
14) predict the new positions of the vortices,
15) apply disturbance for asymmetry(initial time
steps only),
16) write out current positions of the vortices and
values of Cy and Cp,
17) repeat the procedure again from the step 6).

3. Selection of the computational parameters

The parameters which should be set before the

computation begins are ;

1) number of the nascent vortices m,

2) the distance between the nascent vortices and
the cylinder surface 4,

3) magnitude of the time step A¢,

4) disturbance to induce asymmetry.

1) number of the nascent vortices

This number determines degree of resolution of
the flow field. For greater value of this number
therefore, smaller value of time step is to be used

RUCGEM SISO 304 39 19934 8F

to maintain the same scale to deal with distance.
It is somewhat surprising from this point of view
to notice that in the past attention and effort
were largely concentrated to find the most suit-
able value of the time step independently of other
parameters. Because of the convection mechan-
ism in the DVM, the suitable value of § of eq, (2.
16a) also seems to have some connection with
this number as will be discussed in the following.

The restriction on this number comes from two
different aspects concerned with the problem:
the first is the practical side of the job, that is,
computational load as it builds up quickly as the
number increases and the second is that it is not
rational to try to improve the degree of resolution
alone when there is more fundamental source of
error originating from the inviscid fluid model-
ling. This consideration made some number be-
tween fifty and one hundred appear to be reason-
able and sixty were chosen for m in the present
investigation.

2) Position of the nascent vortices

It is natural to put a nascent vortex
circumferentially at midpoint between two neigh-
bouring radial lines of the grid, as eq.(2.16b)
shows. But the choice of the radial position is not
so obvious. The thickness of the boundary layer
appears to offer a good standard for determi-
nation of this position with respect to the cylin-
der surface and deserves serious consideration be-
cause some device that can be incorporated to
the method to account for the Reynolds number
dependency of a flow might be found from this
strategy. If the gap between the nascent vortices
and the cylinder surface denoted by § in eq.(2.
16a) is determined from this idea, it can be too
small when the Reynolds number is very high for
the nascent vortices to convect, apart from the
difficulty of calculating the unsteady boundary
layer thickness and overcoming the embarassed
situation to determine the boundary layer thick-
ness after the separation points. The experience
suggested that smaller mesh size, and hence more
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nascent vortices, was needed for smaller value of
é to help the vortices to convect. This means
that the smaller mesh size is needed for higher
Reynolds number flow, as in other numerical
methods, if § is to be determined based on the
boundary layer thickness,

In spite of the above possibility of develop-
ment, the DVM at the present stage claims to be
a technique of simulating flow of infinite
Reynolds number because of inviscid flow model-
ling. The effect of viscosity being out of con-
sideration, the present study remains within this
traditional attitude. With the number of nascent
vortices fixed as sixty, the suitable value for §
has been therefore sought through numerical
experiments and found to be 0.1.

3) Time step

This is one of the parameters which have been
the subjects of intensive investigation through
the history of development of the DVM, Yet no
general principle has been established for the
choice of good working value on a rational basis.
Instead, the vortex distribution generated with a
value of the time step served as the standard to
judge adequacy of the chosen value. Historically,
values''"”’ 1V petween 0,008—0.32 have been used
in various context of the DVM. Downie'?’ et al.
used 0.2 determined from

6/At =0.5

for a prescribed value of 6 = (0.1 and obtained a
good vortex distribution pattern. This is an
example of interrelating the time step with other
parameter. .

Since the parameters have interrelationship be-
tween them and are dependent on the method of
introducing the nascent vortices, the principle to
find the suitable value of the time step may have
to be sought within the particular context of the
DVM followed by the individual study. When a
grid system is used to discretize the flow field, as

°1% 7

Is 1n the present study, it seems natural to re-
quire for this value to keep the same degree of
resolution of the flow field specified by the mesh
size. Since the representative mesh size is a Af
and the typical displacement of a vortex per time
step is UAt/2 both in terms of dimensional
variables, the appropriate nondimensional time
step may be found as

At =2A0

=4r/m

As m is set as 60, this value becomes about 0.2
which is chosen for the time step in the present
study.

4) disturbance to induce asymmetry

The first ten time steps are chosen for the dur-
ation of imposing the disturbance from the con-
sideration that they will be much smaller than
the number of time steps involved in one period
of vortex shedding and yet long enough to avoid
the shock that the flow field may undergo if the
disturbance be concentrated to a single time step.
Under this premise, the suitable value of ¢ of'eq.
(2.21) has been sought through numerical
experiments and 0.04 has turned up to produce
the best evolution of vortex distribution pattern
in the present study.

4. The computed results

4.1 the vortex distribution pattern

With m = 60 and A+ = 0.2 both fixed, much
amount of numerical experiments was performed
for a systematic variation of the values of § and
¢. The vortex distribution at time step 300
obtained with 6 = 0.1 and ¢ = 0.04 is shown in
Fig.3. For this particular set of parameters, the
vortex distribution pattern was found to maintain
stability for the longest period. When § is
changed to 0.06 and 0.08 with ¢ fixed at 0.04, the
vortex distribution patterns at the time step 200
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Fig. 3 The vortex distribution pattern at t = 60 with
the parameters, 0 = 0.1, At = 0.2, £ = 0.04
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Fig. 4 The vortex distribution pattern at t = 40 with
the parameters, = 0.06, At = 0.2, { = 0.04
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Fig. & The vortex distribution pattern at t = 40 with
the parameters, & = 0.08, At = 0.2, { = 0.04

Fig. 6 The vortex distribution pattern at t = 40 with
the parameters, § = 0.1, At = 0.2, ¢ = 0.03
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Fig. 7 The vortex distribution pattern at t = 60 with
the parameters, 0 = 0.1, At = 0.2, ¢ = 0.05
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are shown in Fig.4 and Fig.5 respectively for
comparison. Slightly better patterns may well be
produced in both cases with finely adjusted & but
no great improvement is expected. Moreover un-
reasonable scattering of Cp and Cp values
calculated with these sets of parameters made it
convincing that & smaller than 0.1 offered no
prospect unless the mesh size was reduced. Thus
0.1 is selected as the value for & and the best
working ¢ was sought for and found to be 0.04.
Fig.6 and Fig.7 show the vortex distribution
patterns when 0.03 and 0.05 respectively are used
for &, these patterns being in contrast to that of
Fig.3. The reason that the vortex distribution
pattern obtained with ¢ = 0.04 exhibits such
stability up to far greater number of time steps
than that with any other ¢ is supposed to be that
amount of disturbance happens to be exactly
what is needed to be in balance with the require-
ment of the cluster of vortices to be shed from
the other side of the cylinder.

4.2 the force coefficients
Fig.8 shows the drag coefficients and the lift
coefficients calculated with the same set of the

20
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parameters as those used to obtain Fig.3. Values
computed by Lee’s formulae and by Sarpkaya’s
ones are plotted together. The term containing
growth rate of the nascent vortices contributes
about ten extra percent to the final values in both
the drag coefficients and the lift coefficients,
making the results of Lee’s formulae that much
greater than those of Sarpkaya'’s. The predicted
drag coefficients are almost directly comparable
with the measured values (Fig.9[13]). Even the
sharp increase of Cp up to about 1.6 just after the
impulsive start is the same. Except the initial
peak, the measured value of Cp, mildly
oscillating, lies between 1.0 and 1.3 depending on
the Reynolds number for the presented time
range of 0 to 24. The predicted Cp seems to be
slightly smaller than the measured for the corre-
sponding time interval but as it becomes greater
immediately after this interval no conclusive
comparison can be made. However, a fairly cer-
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tain discrepancy may be that the predicted
values show more distinct undulation than the
measured ones. This favourable comparison as for
the drag unfortunately does not signify that the
present method is a reliable working tool as for
the lift as well. The predicted C, values are
about twice as large as the measured ones shown
m Fig.10[13]). That the DVM excessively
overestimates lift is inevitably followed in the
present treatment, the trend being generally ac-
cepted as a part of intrinsic attribute of the
DVM. To have comparable lift coefficients, an
ad-hoc contrivance or ammendment of modelling
to reflect the effect of viscosity is to be invoked.
Nonetheless a numerical procedure which faith-
fully and reliably works for the DVM without
such additional measures is of prerequisite
necessity before any improvements of the method
are attempted for more realistic predictions. The
period of lift fluctuation compares much more
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favourably with that of the measured lifts,
suggesting that viscosity plays a negligible role in
determining the period of alternation of vortex
shedding.

5. Conclusions

The vortex shedding from a circular cylinder
can be quite realistically simulated by the DVM
when the computation parameters are suitably
chosen, The parameters are interrelated and the
number of nascent vortices is the fundamental
factor from which the other parameters can be
deduced to maintain the same degree of approxi-
mation, The drag can be estimated to a reliable
level of accuracy without any provision about the
role of the viscosity but the situation is different
with the lift. The lift fluctuation looks, however,
hardly influenced by the viscosity. Some minor
but specific points may be summarized as
follows :

1) it is a good policy to determine the strength
of the nascent vortices from the tangential vel-
ocity at the cylinder surface rather than to deter-
mine them so that the tangential velocities van-
ish,

2) the number of the nascent vortices can be
freely chosen but once it is fixed the other
parameters are to be in conformity with this num-
ber,

3) a working rule to determine the reasonable
gap between the nascent vortices and the cylin-
der surface is to keep it the same as the distance
between two adjascent nascent vortices,

4) the reasonable time interval of introduction
of the nascent vortices may be determined from
At=4n/m,

5) the asymmetry can be stimulated with good
results by gradual imposition of disturbance
spread over a small number of the initial time
steps,

6) the drag is reliably estimated by the present
procedure but some further implementation is
needed to predict the lift by the matching pre-
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cision,
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